mlara commited on
Commit
78fb5d7
·
1 Parent(s): 85824c0

second commit

Browse files
Files changed (35) hide show
  1. EarningsTranscripts (PDF)/AAPL/Apple (AAPL) Q2 2023 Earnings Call Transcript.pdf +0 -0
  2. EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q1 2022 Results - Earnings Call Transcript.pdf +0 -0
  3. EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q2 2022 Results - Earnings Call Transcript.pdf +0 -0
  4. EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q3 2023 Earnings Call Transcript.pdf +0 -0
  5. EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2022 Earnings Call Transcript.pdf +0 -0
  6. EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2023 Earnings Call Transcript.pdf +0 -0
  7. EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) CEO Tim Cook on Q3 2022 Results - Earnings Call Transcript.pdf +0 -0
  8. EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) Q1 2023 Earnings Call Transcript.pdf +0 -0
  9. EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) CEO Sundar Pichai on Q2 2022 Results - Earnings Call Transcript.pdf +0 -0
  10. EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q1 2023 Earnings Call Transcript.pdf +0 -0
  11. EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q2 2023 Earnings Call Transcript.pdf +0 -0
  12. EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2022 Earnings Call Transcript.pdf +0 -0
  13. EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2023 Earnings Call Transcript.pdf +0 -0
  14. EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q4 2022 Earnings Call Transcript.pdf +0 -0
  15. EarningsTranscripts (PDF)/GOOG/Alphabet Inc.'s (GOOG) CEO Sundar Pichai on Q1 2022 Results - Earnings Call Transcript.pdf +0 -0
  16. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q1 Fiscal 2022 Results - Earnings Call Transcript.pdf +0 -0
  17. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q4 2022 Results - Earnings Call Transcript.pdf +0 -0
  18. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2023 Earnings Call Transcript.pdf +0 -0
  19. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2024 Earnings Call Transcript.pdf +0 -0
  20. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q2 2023 Earnings Call Transcript.pdf +0 -0
  21. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q3 2023 Earnings Call Transcript.pdf +0 -0
  22. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q4 2023 Earnings Call Transcript.pdf +0 -0
  23. EarningsTranscripts (PDF)/MSFT/Microsoft Corporation's (MSFT) CEO Satya Nadella on Q2 2022 Results - Earnings Call Transcript.pdf +0 -0
  24. EarningsTranscripts (PDF)/MSFT/Microsoft's (MSFT) CEO Satya Nadella on Q3 2022 Results - Earnings Call Transcript.pdf +0 -0
  25. EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q1 2024 Earnings Call Transcript.pdf +0 -0
  26. EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q2 2024 Earnings Call Transcript.pdf +0 -0
  27. EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q4 2023 Earnings Call Transcript.pdf +0 -0
  28. EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang On Q1 2023 Results - Earnings Call Transcript.pdf +0 -0
  29. EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang on Q2 2023 Results - Earnings Call Transcript.pdf +0 -0
  30. EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2023 Earnings Call Transcript.pdf +0 -0
  31. EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2024 Earnings Call Transcript.pdf +0 -0
  32. app.py +13 -107
  33. earnings_app.py +186 -0
  34. requirements.txt +4 -0
  35. talking_app.py +115 -0
EarningsTranscripts (PDF)/AAPL/Apple (AAPL) Q2 2023 Earnings Call Transcript.pdf ADDED
Binary file (138 kB). View file
 
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q1 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (133 kB). View file
 
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q2 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (140 kB). View file
 
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q3 2023 Earnings Call Transcript.pdf ADDED
Binary file (137 kB). View file
 
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2022 Earnings Call Transcript.pdf ADDED
Binary file (144 kB). View file
 
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2023 Earnings Call Transcript.pdf ADDED
Binary file (145 kB). View file
 
EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) CEO Tim Cook on Q3 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (135 kB). View file
 
EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) Q1 2023 Earnings Call Transcript.pdf ADDED
Binary file (133 kB). View file
 
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) CEO Sundar Pichai on Q2 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (135 kB). View file
 
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q1 2023 Earnings Call Transcript.pdf ADDED
Binary file (144 kB). View file
 
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q2 2023 Earnings Call Transcript.pdf ADDED
Binary file (142 kB). View file
 
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2022 Earnings Call Transcript.pdf ADDED
Binary file (140 kB). View file
 
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2023 Earnings Call Transcript.pdf ADDED
Binary file (133 kB). View file
 
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q4 2022 Earnings Call Transcript.pdf ADDED
Binary file (137 kB). View file
 
EarningsTranscripts (PDF)/GOOG/Alphabet Inc.'s (GOOG) CEO Sundar Pichai on Q1 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (133 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q1 Fiscal 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (150 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q4 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (148 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2023 Earnings Call Transcript.pdf ADDED
Binary file (154 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2024 Earnings Call Transcript.pdf ADDED
Binary file (148 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q2 2023 Earnings Call Transcript.pdf ADDED
Binary file (149 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q3 2023 Earnings Call Transcript.pdf ADDED
Binary file (150 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q4 2023 Earnings Call Transcript.pdf ADDED
Binary file (155 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation's (MSFT) CEO Satya Nadella on Q2 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (151 kB). View file
 
EarningsTranscripts (PDF)/MSFT/Microsoft's (MSFT) CEO Satya Nadella on Q3 2022 Results - Earnings Call Transcript.pdf ADDED
Binary file (157 kB). View file
 
EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q1 2024 Earnings Call Transcript.pdf ADDED
Binary file (149 kB). View file
 
EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q2 2024 Earnings Call Transcript.pdf ADDED
Binary file (139 kB). View file
 
EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q4 2023 Earnings Call Transcript.pdf ADDED
Binary file (132 kB). View file
 
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang On Q1 2023 Results - Earnings Call Transcript.pdf ADDED
Binary file (140 kB). View file
 
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang on Q2 2023 Results - Earnings Call Transcript.pdf ADDED
Binary file (137 kB). View file
 
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2023 Earnings Call Transcript.pdf ADDED
Binary file (135 kB). View file
 
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2024 Earnings Call Transcript.pdf ADDED
Binary file (148 kB). View file
 
app.py CHANGED
@@ -1,115 +1,21 @@
1
- import chainlit as cl
2
- from langchain.embeddings.openai import OpenAIEmbeddings
3
- from langchain.document_loaders.csv_loader import CSVLoader
4
- from langchain.embeddings import CacheBackedEmbeddings
5
- from langchain.text_splitter import RecursiveCharacterTextSplitter
6
- from langchain.vectorstores import FAISS
7
- from langchain.chains import RetrievalQA
8
- from langchain.chat_models import ChatOpenAI
9
- from langchain.storage import LocalFileStore
10
- from langchain.prompts.chat import (
11
- ChatPromptTemplate,
12
- SystemMessagePromptTemplate,
13
- HumanMessagePromptTemplate,
14
- )
15
- import chainlit as cl
16
 
17
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
 
18
 
19
- # Please respond as if you were Ken from the movie Barbie. Ken is a well-meaning but naive character who loves to Beach. He talks like a typical Californian Beach Bro, but he doesn't use the word "Dude" so much.
20
- # If you don't know the answer, just say that you don't know, don't try to make up an answer.
21
- # You can make inferences based on the context as long as it still faithfully represents the feedback.
22
 
23
- system_template = """
24
- Use the following pieces of context to answer the user's question.
25
- Please respond as if you are "RoaringKitty" a Youtuber known for detailed posts and videos on social media platforms like Reddit (particularly the WallStreetBets subreddit) and YouTube, where he shared his investment strategies and analysis .
26
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
27
- You can make inferences based on the context as long as it still faithfully represents the feedback.
28
- Example of your response should be:
29
-
30
- ```
31
- The answer is foo
32
- ```
33
-
34
- Begin!
35
- ----------------
36
- {context}"""
37
-
38
- messages = [
39
- SystemMessagePromptTemplate.from_template(system_template),
40
- HumanMessagePromptTemplate.from_template("{question}"),
41
- ]
42
- prompt = ChatPromptTemplate(messages=messages)
43
- chain_type_kwargs = {"prompt": prompt}
44
-
45
- @cl.author_rename
46
- def rename(orig_author: str):
47
- diamond_char = u'\U0001F537'
48
- phrase = diamond_char + " Diamond Hands " + diamond_char
49
- rename_dict = {"RetrievalQA": phrase}
50
- return rename_dict.get(orig_author, orig_author)
51
 
52
  @cl.on_chat_start
53
- async def init():
54
- msg = cl.Message(content=f"Building Index...")
55
- await msg.send()
56
-
57
- # build FAISS index from csv
58
- loader = CSVLoader(file_path="./data/roaringkitty.csv", source_column="Link")
59
- data = loader.load()
60
- documents = text_splitter.transform_documents(data)
61
- store = LocalFileStore("./cache/")
62
- core_embeddings_model = OpenAIEmbeddings()
63
- embedder = CacheBackedEmbeddings.from_bytes_store(
64
- core_embeddings_model, store, namespace=core_embeddings_model.model
65
- )
66
- # make async docsearch
67
- docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
68
-
69
- chain = RetrievalQA.from_chain_type(
70
- ChatOpenAI(model="gpt-4", temperature=0, streaming=True),
71
- chain_type="stuff",
72
- return_source_documents=True,
73
- retriever=docsearch.as_retriever(),
74
- chain_type_kwargs = {"prompt": prompt}
75
- )
76
-
77
- msg.content = f"Index built!"
78
- await msg.send()
79
-
80
- cl.user_session.set("chain", chain)
81
-
82
 
83
  @cl.on_message
84
- async def main(message):
85
  chain = cl.user_session.get("chain")
86
- cb = cl.AsyncLangchainCallbackHandler(
87
- stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"]
88
- )
89
- cb.answer_reached = True
90
- res = await chain.acall(message, callbacks=[cb], )
91
-
92
- answer = res["result"]
93
- source_elements = []
94
- visited_sources = set()
95
-
96
- # Get the documents from the user session
97
- docs = res["source_documents"]
98
- metadatas = [doc.metadata for doc in docs]
99
- all_sources = [m["source"] for m in metadatas]
100
-
101
- for source in all_sources:
102
- if source in visited_sources:
103
- continue
104
- visited_sources.add(source)
105
- # Create the text element referenced in the message
106
- source_elements.append(
107
- cl.Text(content="https://www.youtube.com/watch?" + source, name="Link to Video")
108
- )
109
-
110
- if source_elements:
111
- answer += f"\nSources: {', '.join([e.content.decode('utf-8') for e in source_elements])}"
112
- else:
113
- answer += "\nNo sources found"
114
-
115
- await cl.Message(content=answer, elements=source_elements).send()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ import chainlet as cl
3
+ import sys
4
 
5
+ sys.path.append(".")
 
 
6
 
7
+ from earnings_app import extract_information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  @cl.on_chat_start
10
+ async def start():
11
+ cl.user_session.set("chain", extract_information())
12
+ await cl.Message(content="Welcome to Earnings chat!").send()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  @cl.on_message
15
+ async def main(message: cl.Message):
16
  chain = cl.user_session.get("chain")
17
+ res = chain.chat(message)
18
+ # res = await chain.aiinvoke({"input": message})
19
+ # res = res["text"]
20
+ out = ''.join(str(res))
21
+ await cl.Message(content=out).send()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
earnings_app.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # Imports
3
+ import asyncio
4
+ import os
5
+ import openai
6
+
7
+ from typing import List, Optional
8
+ from pydantic import BaseModel, Field
9
+
10
+ # from langchain.prompts import ChatPromptTemplate
11
+ from langchain.pydantic_v1 import BaseModel
12
+ # from langchain.utils.openai_functions import convert_pydantic_to_openai_function
13
+ from llama_index.tools import FunctionTool
14
+ from llama_index.vector_stores.types import (
15
+ VectorStoreInfo,
16
+ MetadataInfo,
17
+ ExactMatchFilter,
18
+ MetadataFilters,
19
+ )
20
+ from llama_index.agent import OpenAIAgent
21
+ from llama_index.retrievers import VectorIndexRetriever
22
+ from llama_index.query_engine import RetrieverQueryEngine
23
+
24
+ from typing import List, Tuple, Any
25
+ from pydantic import BaseModel, Field
26
+ from llama_index import load_index_from_storage
27
+ from llama_index import set_global_handler
28
+ import llama_index
29
+ from llama_index.embeddings import OpenAIEmbedding
30
+ from llama_index import ServiceContext
31
+ from llama_index.llms import OpenAI
32
+ from llama_index.ingestion import IngestionPipeline
33
+ from llama_index.node_parser import TokenTextSplitter
34
+
35
+ set_global_handler("wandb", run_args={"project": "final-project-v1"})
36
+ wandb_callback = llama_index.global_handler
37
+
38
+ from dotenv import load_dotenv
39
+ load_dotenv()
40
+
41
+ openai.api_key = os.environ['OPENAI_API_KEY']
42
+
43
+ top_k = 3
44
+
45
+ vector_store_info = VectorStoreInfo(
46
+ content_info="transcripts of earnings calls",
47
+ metadata_info=[MetadataInfo(
48
+ name="title",
49
+ type="str",
50
+ description="Title of the earnings call",
51
+ ),
52
+ MetadataInfo(
53
+ name="period",
54
+ type="str",
55
+ description="Period of the earnings call"
56
+ ),
57
+ MetadataInfo(
58
+ name="ticker",
59
+ type="str",
60
+ description="Ticker of the company"
61
+ ),
62
+ MetadataInfo(
63
+ name="year",
64
+ type="str",
65
+ description="Year of the earnings call"
66
+ ),
67
+ MetadataInfo(
68
+ name="quarter",
69
+ type="str",
70
+ description="Quarter of the earnings call"
71
+ ),
72
+ MetadataInfo(
73
+ name="path",
74
+ type="str",
75
+ description="Path to the earnings call"
76
+ ),
77
+ ])
78
+
79
+ class AutoRetrieveModel(BaseModel):
80
+ query: str = Field(..., description="natural language query string")
81
+ filter_key_list: List[str] = Field(
82
+ ..., description="List of metadata filter field names"
83
+ )
84
+ filter_value_list: List[str] = Field(
85
+ ...,
86
+ description=(
87
+ "List of metadata filter field values (corresponding to names specified in filter_key_list)"
88
+ )
89
+ )
90
+
91
+ embed_model = OpenAIEmbedding()
92
+ chunk_size = 500
93
+
94
+ llm = OpenAI(
95
+ temperature=0,
96
+ model="gpt-4-1106-preview" ### YOUR CODE HERE
97
+ )
98
+
99
+ service_context = ServiceContext.from_defaults(
100
+ llm=llm,
101
+ chunk_size=chunk_size,
102
+ embed_model=embed_model,
103
+ )
104
+
105
+ text_splitter = TokenTextSplitter(
106
+ chunk_size=chunk_size
107
+ )
108
+
109
+ node_parser_pipeline = IngestionPipeline(
110
+ transformations=[text_splitter]
111
+ )
112
+
113
+ storage_context = wandb_callback.load_storage_context(
114
+ artifact_url="llmop/final-project-v1/earnings-index:v0"
115
+ )
116
+
117
+ index = load_index_from_storage(storage_context, service_context=service_context)
118
+
119
+ def auto_retrieve_fn(
120
+ query: str, filter_key_list: List[str], filter_value_list: List[str]
121
+ ):
122
+ """Auto retrieval function.
123
+
124
+ Performs auto-retrieval from a vector database, and then applies a set of filters.
125
+
126
+ """
127
+ query = query or "Query"
128
+
129
+ exact_match_filters = [
130
+ ExactMatchFilter(key=k, value=v)
131
+ for k, v in zip(filter_key_list, filter_value_list)
132
+ ]
133
+ retriever = VectorIndexRetriever(
134
+ index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
135
+ )
136
+ query_engine = RetrieverQueryEngine.from_args(retriever, service_context=service_context)
137
+
138
+ response = query_engine.query(query)
139
+ return str(response)
140
+
141
+ # App
142
+
143
+ # Pydantic is an easy way to define a schema
144
+ class AutoRetrieveModel(BaseModel):
145
+ query: str = Field(..., description="natural language query string")
146
+ filter_key_list: List[str] = Field(
147
+ ..., description="List of metadata filter field names"
148
+ )
149
+ filter_value_list: List[str] = Field(
150
+ ...,
151
+ description=(
152
+ "List of metadata filter field values (corresponding to names specified in filter_key_list)"
153
+ )
154
+ )
155
+
156
+ # Main function to extract information
157
+ def extract_information():
158
+ # Make sure to use a recent model that supports tools
159
+
160
+ auto_retrieve_tool = FunctionTool.from_defaults(
161
+ fn=auto_retrieve_fn,
162
+ name="earnings-transcripts",
163
+ description="Earnings Bot",
164
+ fn_schema=AutoRetrieveModel
165
+ )
166
+
167
+ agent = OpenAIAgent.from_tools(
168
+ tools=[auto_retrieve_tool],
169
+ )
170
+
171
+ return agent
172
+
173
+
174
+ if __name__ == "__main__":
175
+ text = "Who is the CEO of MSFT."
176
+ chain = extract_information()
177
+ print(str(chain.chat(text)))
178
+
179
+ async def extract_information_async(message: str):
180
+ return str(chain.chat(text))
181
+
182
+ async def main():
183
+ res = await extract_information_async(text)
184
+ print(res)
185
+
186
+ asyncio.run(main())
requirements.txt CHANGED
@@ -3,3 +3,7 @@ langchain==0.0.265
3
  tiktoken==0.4.0
4
  openai==0.27.8
5
  faiss-cpu==1.7.4
 
 
 
 
 
3
  tiktoken==0.4.0
4
  openai==0.27.8
5
  faiss-cpu==1.7.4
6
+ llama-index
7
+ cohere
8
+ wandb
9
+ pydantic==1.10.11
talking_app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import chainlit as cl
2
+ from langchain.embeddings.openai import OpenAIEmbeddings
3
+ from langchain.document_loaders.csv_loader import CSVLoader
4
+ from langchain.embeddings import CacheBackedEmbeddings
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain.vectorstores import FAISS
7
+ from langchain.chains import RetrievalQA
8
+ from langchain.chat_models import ChatOpenAI
9
+ from langchain.storage import LocalFileStore
10
+ from langchain.prompts.chat import (
11
+ ChatPromptTemplate,
12
+ SystemMessagePromptTemplate,
13
+ HumanMessagePromptTemplate,
14
+ )
15
+ import chainlit as cl
16
+
17
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
18
+
19
+ # Please respond as if you were Ken from the movie Barbie. Ken is a well-meaning but naive character who loves to Beach. He talks like a typical Californian Beach Bro, but he doesn't use the word "Dude" so much.
20
+ # If you don't know the answer, just say that you don't know, don't try to make up an answer.
21
+ # You can make inferences based on the context as long as it still faithfully represents the feedback.
22
+
23
+ system_template = """
24
+ Use the following pieces of context to answer the user's question.
25
+ Please respond as if you are "RoaringKitty" a Youtuber known for detailed posts and videos on social media platforms like Reddit (particularly the WallStreetBets subreddit) and YouTube, where he shared his investment strategies and analysis .
26
+ If you don't know the answer, just say that you don't know, don't try to make up an answer.
27
+ You can make inferences based on the context as long as it still faithfully represents the feedback.
28
+ Example of your response should be:
29
+
30
+ ```
31
+ The answer is foo
32
+ ```
33
+
34
+ Begin!
35
+ ----------------
36
+ {context}"""
37
+
38
+ messages = [
39
+ SystemMessagePromptTemplate.from_template(system_template),
40
+ HumanMessagePromptTemplate.from_template("{question}"),
41
+ ]
42
+ prompt = ChatPromptTemplate(messages=messages)
43
+ chain_type_kwargs = {"prompt": prompt}
44
+
45
+ @cl.author_rename
46
+ def rename(orig_author: str):
47
+ diamond_char = u'\U0001F537'
48
+ phrase = diamond_char + " Diamond Hands " + diamond_char
49
+ rename_dict = {"RetrievalQA": phrase}
50
+ return rename_dict.get(orig_author, orig_author)
51
+
52
+ @cl.on_chat_start
53
+ async def init():
54
+ msg = cl.Message(content=f"Building Index...")
55
+ await msg.send()
56
+
57
+ # build FAISS index from csv
58
+ loader = CSVLoader(file_path="./data/roaringkitty.csv", source_column="Link")
59
+ data = loader.load()
60
+ documents = text_splitter.transform_documents(data)
61
+ store = LocalFileStore("./cache/")
62
+ core_embeddings_model = OpenAIEmbeddings()
63
+ embedder = CacheBackedEmbeddings.from_bytes_store(
64
+ core_embeddings_model, store, namespace=core_embeddings_model.model
65
+ )
66
+ # make async docsearch
67
+ docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
68
+
69
+ chain = RetrievalQA.from_chain_type(
70
+ ChatOpenAI(model="gpt-4", temperature=0, streaming=True),
71
+ chain_type="stuff",
72
+ return_source_documents=True,
73
+ retriever=docsearch.as_retriever(),
74
+ chain_type_kwargs = {"prompt": prompt}
75
+ )
76
+
77
+ msg.content = f"Index built!"
78
+ await msg.send()
79
+
80
+ cl.user_session.set("chain", chain)
81
+
82
+
83
+ @cl.on_message
84
+ async def main(message):
85
+ chain = cl.user_session.get("chain")
86
+ cb = cl.AsyncLangchainCallbackHandler(
87
+ stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"]
88
+ )
89
+ cb.answer_reached = True
90
+ res = await chain.acall(message, callbacks=[cb], )
91
+
92
+ answer = res["result"]
93
+ source_elements = []
94
+ visited_sources = set()
95
+
96
+ # Get the documents from the user session
97
+ docs = res["source_documents"]
98
+ metadatas = [doc.metadata for doc in docs]
99
+ all_sources = [m["source"] for m in metadatas]
100
+
101
+ for source in all_sources:
102
+ if source in visited_sources:
103
+ continue
104
+ visited_sources.add(source)
105
+ # Create the text element referenced in the message
106
+ source_elements.append(
107
+ cl.Text(content="https://www.youtube.com/watch?" + source, name="Link to Video")
108
+ )
109
+
110
+ if source_elements:
111
+ answer += f"\nSources: {', '.join([e.content.decode('utf-8') for e in source_elements])}"
112
+ else:
113
+ answer += "\nNo sources found"
114
+
115
+ await cl.Message(content=answer, elements=source_elements).send()