mlara's picture
add req
0a3a16f
raw
history blame
1.83 kB
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)
# OpenAI Chat completion
import os
import sys
from openai import AsyncOpenAI # importing openai for API usage
import chainlit as cl # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
from dotenv import load_dotenv
load_dotenv()
# Add path to the root of the repo to the system path
sys.path.append(".")
from rag import _build_vector_db, RetrievalAugmentedQAPipeline
# ChatOpenAI Templates
system_template = """You are a helpful assistant who always speaks in a pleasant tone!
"""
user_template = """{input}
Think through your response step by step.
"""
@cl.on_chat_start # marks a function that will be executed at the start of a user session
async def start_chat():
settings = {
"model": "gpt-3.5-turbo",
"temperature": 0,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
cl.user_session.set("settings", settings)
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
settings = cl.user_session.get("settings")
# client = AsyncOpenAI()
client = ChatOpenAI()
print(message.content)
vector_db = _build_vector_db()
pipeline = RetrievalAugmentedQAPipeline(
llm=client,
vector_db_retriever=vector_db
)
response = pipeline.run_pipeline(message.content)
msg = cl.Message(content="")
# Update the prompt object with the completion
msg.prompt = response
# Send and close the message stream
await msg.send()