Spaces:
Sleeping
Sleeping
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) | |
# OpenAI Chat completion | |
import os | |
import sys | |
from openai import AsyncOpenAI # importing openai for API usage | |
import chainlit as cl # importing chainlit for our app | |
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools | |
# from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools | |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Add path to the root of the repo to the system path | |
sys.path.append(".") | |
from rag import _build_vector_db, RetrievalAugmentedQAPipeline | |
# ChatOpenAI Templates | |
system_template = """You are a helpful assistant who always speaks in a pleasant tone! | |
""" | |
user_template = """{input} | |
Think through your response step by step. | |
""" | |
# marks a function that will be executed at the start of a user session | |
async def start_chat(): | |
settings = { | |
"model": "gpt-3.5-turbo", | |
"temperature": 0, | |
"max_tokens": 500, | |
"top_p": 1, | |
"frequency_penalty": 0, | |
"presence_penalty": 0, | |
} | |
cl.user_session.set("settings", settings) | |
# marks a function that should be run each time the chatbot receives a message from a user | |
async def main(message: cl.Message): | |
settings = cl.user_session.get("settings") | |
# client = AsyncOpenAI() | |
chat_openai = ChatOpenAI() | |
print(message.content) | |
vector_db = _build_vector_db() | |
pipeline = RetrievalAugmentedQAPipeline( | |
llm=chat_openai, | |
vector_db_retriever=vector_db | |
) | |
response = pipeline.run_pipeline(message.content) | |
msg = cl.Message(content=response) | |
# Update the prompt object with the completion | |
# msg.prompt = response | |
# msg.stream_token(response) | |
# msg.content = response | |
# Send and close the message stream | |
await msg.send() | |