# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) # OpenAI Chat completion import os import sys from openai import AsyncOpenAI # importing openai for API usage import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools # from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools from aimakerspace.openai_utils.chatmodel import ChatOpenAI from dotenv import load_dotenv load_dotenv() # Add path to the root of the repo to the system path sys.path.append(".") from rag import _build_vector_db, RetrievalAugmentedQAPipeline # ChatOpenAI Templates system_template = """You are a helpful assistant who always speaks in a pleasant tone! """ user_template = """{input} Think through your response step by step. """ @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): settings = { "model": "gpt-3.5-turbo", "temperature": 0, "max_tokens": 500, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, } cl.user_session.set("settings", settings) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: cl.Message): settings = cl.user_session.get("settings") # client = AsyncOpenAI() chat_openai = ChatOpenAI() print(message.content) vector_db = _build_vector_db() pipeline = RetrievalAugmentedQAPipeline( llm=chat_openai, vector_db_retriever=vector_db ) response = pipeline.run_pipeline(message.content) msg = cl.Message(content=response) # Update the prompt object with the completion # msg.prompt = response # msg.stream_token(response) # msg.content = response # Send and close the message stream await msg.send()