import os import shutil import subprocess import signal os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr from huggingface_hub import HfApi from huggingface_hub import ModelCard from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler HF_TOKEN = os.environ.get("HF_TOKEN") HF_PATH = "https://huggingface.co/" def button_click(hf_model_id, conv_template, quantization): api = HfApi() model_dir_name = hf_model_id.split("/")[1] mlc_model_name = model_dir_name + "-" + quantization + "-" + "MLC" os.system("mkdir -p dist/models") os.system("git lfs install") api.snapshot_download(repo_id=hf_model_id, local_dir=f"./dist/models/{model_dir_name}") os.system("mlc_llm convert_weight ./dist/models/" + model_dir_name + "/" + \ " --quantization " + quantization + \ " -o dist/" + mlc_model_name) os.system("mlc_llm gen_config ./dist/models/" + model_dir_name + "/" + \ " --quantization " + quantization + " --conv-template " + conv_template + \ " -o dist/" + mlc_model_name + "/") # push to HF user_name = api.whoami()["name"] api.create_repo(repo_id=f"{user_name}/{mlc_model_name}", private=True) api.upload_large_folder(folder_path=f"./dist/{mlc_model_name}", repo_id=f"{user_name}/{mlc_model_name}", repo_type="model") return "successful" demo = gr.Interface( fn=button_click, inputs = [gr.Textbox(label="HF Model ID"), gr.Dropdown(["tinyllama_v1_0", "qwen2"], label="Conversation Template"), gr.Dropdown(["q4f16_1", "q4f32_1"], label="Quantization Method")], outputs = "text" ) demo.launch()