Spaces:
Running
Running
import gradio as gr | |
import subprocess | |
from huggingface_hub import create_repo, HfApi | |
from huggingface_hub import snapshot_download | |
api = HfApi() | |
def process_model(model_id, q_method, username, hf_token): | |
MODEL_NAME = model_id.split('/')[-1] | |
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin" | |
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False) | |
print("Model downloaded successully!") | |
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}" | |
subprocess.run(fp16_conversion, shell=True) | |
print("Model converted to fp16 successully!") | |
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf" | |
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}" | |
subprocess.run(quantise_ggml, shell=True) | |
print("Quantised successfully!") | |
# Create empty repo | |
create_repo( | |
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF", | |
repo_type="model", | |
exist_ok=True, | |
token=hf_token | |
) | |
print("Empty repo created successfully!") | |
# Upload gguf files | |
api.upload_folder( | |
folder_path=MODEL_NAME, | |
repo_id=f"{username}/{MODEL_NAME}-{q_method}-GGUF", | |
allow_patterns=["*.gguf","$.md"], | |
token=hf_token | |
) | |
print("Uploaded successfully!") | |
return "Processing complete." | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=process_model, | |
inputs=[ | |
gr.Textbox(lines=1, label="Model ID"), | |
gr.Textbox(lines=1, label="Quantization Methods"), | |
gr.Textbox(lines=1, label="Username"), | |
gr.Textbox(lines=1, label="Token") | |
], | |
outputs="text" | |
) | |
# Launch the interface | |
iface.launch(debug=True) |