mlx-my-repo / app.py
reach-vb's picture
reach-vb HF staff
Update app.py (#23)
87f5ccd verified
raw
history blame
4.83 kB
import os
import shutil
import subprocess
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from textwrap import dedent
LLAMA_LIKE_ARCHS = ["MistralForCausalLM", "LlamaForCausalLM"]
def script_to_use(model_id, api):
info = api.model_info(model_id)
if info.config is None:
return None
arch = info.config.get("architectures", None)
if arch is None:
return None
arch = arch[0]
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
def process_model(model_id, q_method, hf_token):
model_name = model_id.split('/')[-1]
fp16 = f"{model_name}/{model_name.lower()}.fp16.bin"
try:
api = HfApi(token=hf_token)
snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False)
print("Model downloaded successully!")
conversion_script = script_to_use(model_id, api)
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
print("Model converted to fp16 successully!")
qtype = f"{model_name}/{model_name.lower()}.{q_method.upper()}.gguf"
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error quantizing: {result.stderr}")
print("Quantised successfully!")
# Create empty repo
new_repo_url = api.create_repo(repo_id=f"{model_name}-{q_method}-GGUF", exist_ok=True)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
card = ModelCard.load(model_id)
card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"]
card.text = dedent(
f"""
# {new_repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
## Use with llama.cpp
```bash
brew install ggerganov/ggerganov/llama.cpp
```
```bash
llama-cli --hf-repo {new_repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is "
```
```bash
llama-server --hf-repo {new_repo_id} --model {qtype.split("/")[-1]} -c 2048
```
"""
)
card.save(os.path.join(model_name, "README-new.md"))
api.upload_file(
path_or_fileobj=qtype,
path_in_repo=qtype.split("/")[-1],
repo_id=new_repo_id,
)
api.upload_file(
path_or_fileobj=f"{model_name}/README-new.md",
path_in_repo="README.md",
repo_id=new_repo_id,
)
print("Uploaded successfully!")
return (
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(model_name, ignore_errors=True)
print("Folder cleaned up successfully!")
# Create Gradio interface
iface = gr.Interface(
fn=process_model,
inputs=[
gr.Textbox(
lines=1,
label="Hub Model ID",
info="Model repo ID",
),
gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method",
info="GGML quantisation type",
value="Q4_K_M",
filterable=False
),
gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
)
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants, blazingly fast ⚡!",
description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.",
article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>",
)
# Launch the interface
iface.launch(debug=True)