Spaces:
Running
Running
import os | |
import tempfile | |
os.environ["HF_HUB_CACHE"] = "cache" | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
import gradio as gr | |
from huggingface_hub import HfApi | |
from huggingface_hub import whoami | |
from huggingface_hub import ModelCard | |
from huggingface_hub import scan_cache_dir | |
from huggingface_hub import logging | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from textwrap import dedent | |
import mlx_lm | |
from mlx_lm import convert | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# I'm not sure if we need to add more stuff here | |
QUANT_PARAMS = { | |
"Q2": 2 | |
"Q4": 4, | |
"Q8": 8, | |
} | |
def list_files_in_folder(folder_path): | |
# List all files and directories in the specified folder | |
all_items = os.listdir(folder_path) | |
# Filter out only files | |
files = [item for item in all_items if os.path.isfile(os.path.join(folder_path, item))] | |
return files | |
def clear_hf_cache_space(): | |
scan = scan_cache_dir() | |
to_delete = [] | |
for repo in scan.repos: | |
if repo.repo_type == "model": | |
to_delete.extend([rev.commit_hash for rev in repo.revisions]) | |
scan.delete_revisions(*to_delete).execute() | |
print("Cache has been cleared") | |
def upload_to_hub(path, upload_repo, hf_path, oauth_token): | |
card = ModelCard.load(hf_path, token=oauth_token.token) | |
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx", "mlx-my-repo"] | |
card.data.base_model = hf_path | |
card.text = dedent( | |
f""" | |
# {upload_repo} | |
The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to MLX format from [{hf_path}](https://huggingface.co/{hf_path}) using mlx-lm version **{mlx_lm.__version__}**. | |
## Use with mlx | |
```bash | |
pip install mlx-lm | |
``` | |
```python | |
from mlx_lm import load, generate | |
model, tokenizer = load("{upload_repo}") | |
prompt="hello" | |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | |
messages = [{{"role": "user", "content": prompt}}] | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
``` | |
""" | |
) | |
card.save(os.path.join(path, "README.md")) | |
logging.set_verbosity_info() | |
api = HfApi(token=oauth_token.token) | |
api.create_repo(repo_id=upload_repo, exist_ok=True) | |
files = list_files_in_folder(path) | |
print(files) | |
for file in files: | |
file_path = os.path.join(path, file) | |
print(f"Uploading file: {file_path}") | |
api.upload_file( | |
path_or_fileobj=file_path, | |
path_in_repo=file, | |
repo_id=upload_repo, | |
) | |
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.") | |
def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None): | |
if oauth_token.token is None: | |
raise ValueError("You must be logged in to use MLX-my-repo") | |
model_name = model_id.split('/')[-1] | |
username = whoami(oauth_token.token)["name"] | |
try: | |
upload_repo = f"{username}/{model_name}-{q_method}-mlx" | |
print(upload_repo) | |
with tempfile.TemporaryDirectory(dir="converted") as tmpdir: | |
# The target dir must not exist | |
mlx_path = os.path.join(tmpdir, "mlx") | |
convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=QUANT_PARAMS[q_method]) | |
print("Conversion done") | |
upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token) | |
print("Upload done") | |
return ( | |
f'Find your repo <a href="https://hf.co/{upload_repo}" target="_blank" style="text-decoration:underline">here</a>', | |
"llama.png", | |
) | |
except Exception as e: | |
return (f"Error: {e}", "error.png") | |
finally: | |
clear_hf_cache_space() | |
print("Folder cleaned up successfully!") | |
css="""/* Custom CSS to allow scrolling */ | |
.gradio-container {overflow-y: auto;} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("You must be logged in to use MLX-my-repo.") | |
gr.LoginButton(min_width=250) | |
model_id = HuggingfaceHubSearch( | |
label="Hub Model ID", | |
placeholder="Search for model id on Huggingface", | |
search_type="model", | |
) | |
q_method = gr.Dropdown( | |
["Q2", "Q4", "Q8"], | |
label="Quantization Method", | |
info="MLX quantization type", | |
value="Q4", | |
filterable=False, | |
visible=True | |
) | |
iface = gr.Interface( | |
fn=process_model, | |
inputs=[ | |
model_id, | |
q_method, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
gr.Image(show_label=False), | |
], | |
title="Create your own MLX Quants, blazingly fast ⚡!", | |
description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.", | |
api_name=False | |
) | |
def restart_space(): | |
HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=21600) | |
scheduler.start() | |
# Launch the interface | |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |