import os
import tempfile

os.environ["HF_HUB_CACHE"] = "cache"
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr

from huggingface_hub import HfApi
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from huggingface_hub import scan_cache_dir
from huggingface_hub import logging

from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler

from textwrap import dedent

import mlx_lm
from mlx_lm import convert

HF_TOKEN = os.environ.get("HF_TOKEN")

# I'm not sure if we need to add more stuff here
QUANT_PARAMS = {
    "Q2": 2,
    "Q3": 3,
    "Q4": 4,
    "Q6": 6,
    "Q8": 8,
}

def list_files_in_folder(folder_path):
    # List all files and directories in the specified folder
    all_items = os.listdir(folder_path)
    
    # Filter out only files
    files = [item for item in all_items if os.path.isfile(os.path.join(folder_path, item))]
    
    return files

def clear_hf_cache_space():
    scan = scan_cache_dir()
    to_delete = []
    for repo in scan.repos:
        if repo.repo_type == "model":
            to_delete.extend([rev.commit_hash for rev in repo.revisions])
    scan.delete_revisions(*to_delete).execute()
    print("Cache has been cleared")

def upload_to_hub(path, upload_repo, hf_path, oauth_token):
    card = ModelCard.load(hf_path, token=oauth_token.token)
    card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx", "mlx-my-repo"]
    card.data.base_model = hf_path
    card.text = dedent(
        f"""
        # {upload_repo}

        The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to MLX format from [{hf_path}](https://huggingface.co/{hf_path}) using mlx-lm version **{mlx_lm.__version__}**.

        ## Use with mlx

        ```bash
        pip install mlx-lm
        ```

        ```python
        from mlx_lm import load, generate

        model, tokenizer = load("{upload_repo}")

        prompt="hello"

        if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
            messages = [{{"role": "user", "content": prompt}}]
            prompt = tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )

        response = generate(model, tokenizer, prompt=prompt, verbose=True)
        ```
        """
    )
    card.save(os.path.join(path, "README.md"))

    logging.set_verbosity_info()

    api = HfApi(token=oauth_token.token)
    api.create_repo(repo_id=upload_repo, exist_ok=True)

    files = list_files_in_folder(path)
    print(files)
    for file in files:
        file_path = os.path.join(path, file)
        print(f"Uploading file: {file_path}")
        api.upload_file(
            path_or_fileobj=file_path,
            path_in_repo=file,
            repo_id=upload_repo,
        )
        
    print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")    

def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
    if oauth_token.token is None:
        raise ValueError("You must be logged in to use MLX-my-repo")
    
    model_name = model_id.split('/')[-1]
    username = whoami(oauth_token.token)["name"]
    try:
        if q_method == "FP16":
            upload_repo = f"{username}/{model_name}-mlx-fp16"
            with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
                # The target directory must not exist
                mlx_path = os.path.join(tmpdir, "mlx")
                convert(model_id, mlx_path=mlx_path, quantize=False, dtype="float16")
                print("Conversion done")
                upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token)
                print("Upload done")
        else:
            q_bits = QUANT_PARAMS[q_method]
            upload_repo = f"{username}/{model_name}-mlx-{q_bits}Bit"
            with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
                # The target directory must not exist
                mlx_path = os.path.join(tmpdir, "mlx")
                convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=q_bits)
                print("Conversion done")
                upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token)
                print("Upload done")
        return (
            f'Find your repo <a href="https://hf.co/{upload_repo}" target="_blank" style="text-decoration:underline">here</a>',
            "llama.png",
        )
    except Exception as e:
        return (f"Error: {e}", "error.png")
    finally:
        clear_hf_cache_space()
        print("Folder cleaned up successfully!")

css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo: 
    gr.Markdown("You must be logged in to use MLX-my-repo.")
    gr.LoginButton(min_width=250)

    model_id = HuggingfaceHubSearch(
        label="Hub Model ID",
        placeholder="Search for model id on Huggingface",
        search_type="model",
    )

    q_method = gr.Dropdown(
        ["FP16", "Q2", "Q3", "Q4", "Q6", "Q8"],
        label="Conversion Method",
        info="MLX conversion type (FP16 for float16, Q2–Q8 for quantized models)",
        value="Q4",
        filterable=False,
        visible=True
    )
    
    iface = gr.Interface(
        fn=process_model,
        inputs=[
            model_id,
            q_method,
        ],
        outputs=[
            gr.Markdown(label="output"),
            gr.Image(show_label=False),
        ],
        title="Create your own MLX Models, blazingly fast ⚡!",
        description="The space takes an HF repo as an input, converts it to MLX format (FP16 or quantized), and creates a Public/Private repo under your HF user namespace.",
        api_name=False
    )

def restart_space():
    HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)