import torch import gradio as gr import os import numpy as np import trimesh import mcubes from torchvision.utils import save_image from PIL import Image from transformers import AutoModel, AutoConfig from rembg import remove, new_session from functools import partial from kiui.op import recenter import kiui # we load the pre-trained model from HF class LRMGeneratorWrapper: def __init__(self): self.config = AutoConfig.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True) self.model = AutoModel.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(self.device) self.model.eval() def forward(self, image, camera): return self.model(image, camera) model_wrapper = LRMGeneratorWrapper() def preprocess_image(image, source_size): session = new_session("isnet-general-use") rembg_remove = partial(remove, session=session) image = np.array(image) image = rembg_remove(image) mask = rembg_remove(image, only_mask=True) image = recenter(image, mask, border_ratio=0.20) image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0 if image.shape[1] == 4: image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True) image = torch.clamp(image, 0, 1) return image def get_normalized_camera_intrinsics(intrinsics: torch.Tensor): """ intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] Return batched fx, fy, cx, cy """ fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1] cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1] width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1] fx, fy = fx / width, fy / height cx, cy = cx / width, cy / height return fx, fy, cx, cy def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor): """ RT: (N, 3, 4) intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] """ fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) return torch.cat([ RT.reshape(-1, 12), fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1), ], dim=-1) def _default_intrinsics(): fx = fy = 384 cx = cy = 256 w = h = 512 intrinsics = torch.tensor([ [fx, fy], [cx, cy], [w, h], ], dtype=torch.float32) return intrinsics def _default_source_camera(batch_size: int = 1): dist_to_center = 1.5 canonical_camera_extrinsics = torch.tensor([[ [0, 0, 1, 1], [1, 0, 0, 0], [0, 1, 0, 0], ]], dtype=torch.float32) canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0) source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics) return source_camera.repeat(batch_size, 1) #Ref: https://github.com/jadechoghari/vfusion3d/blob/main/lrm/inferrer.py def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=True): image = preprocess_image(image, source_size).to(model_wrapper.device) source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device) # TODO: export video we need render_camera # render_camera = _default_render_cameras(batch_size=1).to(model_wrapper.device) with torch.no_grad(): planes = model_wrapper.forward(image, source_camera) if export_mesh: grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size) vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0) vtx = vtx / (mesh_size - 1) * 2 - 1 vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0) vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() vtx_colors = (vtx_colors * 255).astype(np.uint8) mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) mesh_path = "awesome_mesh.obj" mesh.export(mesh_path, 'obj') return mesh_path # we will convert image to mesh def step_1_generate_obj(image): mesh_path = generate_mesh(image) return mesh_path # we will convert mesh to 3d-image def step_2_display_3d_model(mesh_file): return mesh_file with gr.Blocks() as demo: with gr.Row(): with gr.Column(): img_input = gr.Image(type="pil", label="Input Image") generate_button = gr.Button("Generate and Visualize 3D Model") obj_file_output = gr.File(label="Download .obj File") with gr.Column(): model_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model Visualization") def generate_and_visualize(image): mesh_path = step_1_generate_obj(image) return mesh_path, mesh_path generate_button.click(generate_and_visualize, inputs=img_input, outputs=[obj_file_output, model_output]) demo.launch()