csv2sql / app.py
mobinln's picture
feat: add sidebar
67c0b3c
raw
history blame
3.83 kB
import streamlit as st
import numpy as np
from llm import load_llm, response_generator
from sql import csv_to_sqlite, run_sql_query
repo_id = "Qwen/Qwen2.5-Coder-1.5B-Instruct-GGUF"
filename = "qwen2.5-coder-1.5b-instruct-q8_0.gguf"
# repo_id = "Qwen/Qwen2.5-0.5B-Instruct-GGUF"
# filename = "qwen2.5-0.5b-instruct-q8_0.gguf"
llm = load_llm(repo_id, filename)
st.title("CSV TO SQL")
st.write("To start, Upload your CSV below πŸ‘‡")
if st.button("Example prompt"):
st.session_state.csv_file = "./data/sales.csv"
st.session_state.db_name = "sales"
st.session_state.table_name = "sales"
csv_to_sqlite("./data/sales.csv", "sales", "sales")
prompt = "What is the sum, count and average sales?"
st.session_state.messages.append({"role": "user", "content": prompt})
response_sql = response_generator(
db_name=st.session_state.db_name,
table_name=st.session_state.table_name,
llm=llm,
messages=st.session_state.messages,
question=prompt,
)
result = run_sql_query(db_name=st.session_state.db_name, query=response_sql)
st.session_state.messages.append({"role": "assistant", "content": response_sql})
st.session_state.messages.append(
{"role": "assistant", "content": str(result), "result": result}
)
with st.expander("Upload CSV"):
csv_file = st.file_uploader(
"CSV",
)
db_name = st.text_input("DB Name")
table_name = st.text_input("Table Name")
if st.button("Save"):
if csv_file and db_name and table_name:
st.session_state.csv_file = csv_file
st.session_state.db_name = db_name
st.session_state.table_name = table_name
csv_to_sqlite(csv_file, db_name, table_name)
st.write("Saved βœ…")
else:
st.write("Please enter all values")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
if "content" in message:
if message["role"] == "user":
st.markdown(message["content"])
else:
st.code(message["content"])
if "result" in message:
st.dataframe(message["result"])
# Accept user input
if prompt := st.chat_input(
"What is up?",
disabled=(
not "db_name" in st.session_state or not "table_name" in st.session_state
),
):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
response_sql = response_generator(
db_name=st.session_state.db_name,
table_name=st.session_state.table_name,
llm=llm,
messages=st.session_state.messages,
question=prompt,
)
response = st.code(response_sql)
result = run_sql_query(db_name=st.session_state.db_name, query=response_sql)
st.markdown(result)
st.table(result)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response_sql})
with st.sidebar:
st.title("Data Previewer")
st.write("You can see you CSV file content here")
if (
"csv_file" in st.session_state
and "db_name" in st.session_state
and "table_name" in st.session_state
):
result = run_sql_query(
db_name=st.session_state.db_name,
query=f"SELECT * FROM {st.session_state.table_name}",
)
st.dataframe(result)