import os os.system('pip install modelscope') os.system('pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html') os.system('pip install skimage') import json from PIL import Image from skimage import io import gradio as gr from modelscope_studio import encode_image, decode_image, call_demo_service yes, no = "是", "否" def get_size(h, w, max_size=720): if min(h, w) > max_size: if h > w: h, w = int(max_size * h / w), max_size else: h, w = max_size, int(max_size * w / h) return h, w def inference(img: Image, colorization_option: str, image_denoise_option: str, color_enhance_option: str) -> Image: if img is None: return None w, h = img.size h, w = get_size(h, w, 512) img = img.resize((w, h)) input_url = encode_image(img) res_url = input_url # image-denoising (optional) if image_denoise_option == yes: data = { "task": "image-denoising", "inputs": [ res_url ], "parameters":{}, "urlPaths": { "inUrls": [ { "value": res_url, "fileType": "png", "type": "image", "displayType": "ImgUploader", "validator": { "accept": "*.jpeg,*.jpg,*.png", "max_resolution": "5000*5000", "max_size": "10m" }, "name": "", "title": "" } ], "outUrls": [ { "outputKey": "output_img", "type": "image" } ] } } result = call_demo_service( path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data)) print(f"image-denoising result: {result}") res_url = result['data']['output_img'] # image-colorization (optional) if colorization_option == yes: data = { "task": "image-colorization", "inputs": [ res_url ], "parameters":{}, "urlPaths": { "inUrls": [ { "value": res_url, "fileType": "png", "type": "image", "displayType": "ImgUploader", "validator": { "accept": "*.jpeg,*.jpg,*.png", "max_size": "10m", "max_resolution": "5000*5000", }, "name": "", "title": "" } ], "outUrls": [ { "outputKey": "output_img", "type": "image" } ] } } result = call_demo_service( path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data)) print(f"image-colorization result: {result}") res_url = result['data']['output_img'] # image-portrait-enhancement data = { "task": "image-portrait-enhancement", "inputs": [ res_url ], "parameters":{}, "urlPaths": { "inUrls": [ { "value": res_url, "fileType": "png", "type": "image", "displayType": "ImgUploader", "validator": { "accept": "*.jpeg,*.jpg,*.png", "max_size": "10M", "max_resolution": "2000*2000", }, "name": "", "title": "" } ], "outUrls": [ { "outputKey": "output_img", "type": "image" } ] } } result = call_demo_service( path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data)) print(f"image-portrait-enhancement result: {result}") res_url = result['data']['output_img'] # image-color-enhancement (optional) if color_enhance_option == yes: data = { "task": "image-color-enhancement", "inputs": [ res_url ], "parameters":{}, "urlPaths": { "inUrls": [ { "value": res_url, "fileType": "png", "type": "image", "displayType": "ImgUploader", "validator": { "accept": "*.jpeg,*.jpg,*.png", "max_size": "10m", "max_resolution": "5000*5000", }, "name": "", "title": "" } ], "outUrls": [ { "outputKey": "output_img", "type": "image" } ] } } result = call_demo_service( path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data)) print(f"image-color-enhancement result: {result}") res_url = result['data']['output_img'] res_img = decode_image(res_url) return res_img title = "AI老照片修复" description = ''' 输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~ ''' examples = [[os.path.dirname(__file__) + './images/input1.jpg'], [os.path.dirname(__file__) + './images/input2.jpg'], [os.path.dirname(__file__) + './images/input3.jpg'], [os.path.dirname(__file__) + './images/input4.jpg'], [os.path.dirname(__file__) + './images/input5.jpg']] css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}" with gr.Blocks(title=title, css=css_style) as demo: gr.HTML('''
overview
''') gr.Markdown(description) with gr.Row(): with gr.Column(scale=2): img_input = gr.components.Image(label="图片", type="pil") colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes) image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no) color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no) btn = gr.Button("一键修复") with gr.Column(scale=3): img_output = gr.components.Image(label="图片", type="pil").style(height=600) inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option] btn.click(fn=inference, inputs=inputs, outputs=img_output) gr.Examples(examples, inputs=img_input) demo.launch()