Spaces:
Runtime error
Runtime error
File size: 5,282 Bytes
b2718af 58bd4d6 76b30b5 b2718af 05cca96 58bd4d6 05cca96 58bd4d6 05cca96 b2718af 58bd4d6 b2718af 58bd4d6 b2718af 58bd4d6 b2718af 58bd4d6 b2718af 58bd4d6 b2718af 58bd4d6 05cca96 b2718af 05cca96 58bd4d6 05cca96 58bd4d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from langchain_community.llms import HuggingFaceHub
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from datasets import load_dataset
import pandas as pd
from functools import lru_cache
import gradio as gr
from huggingface_hub import InferenceClient
# Ensure you have set your Hugging Face API token here or as an environment variable
# Initialize the Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Load dataset
dataset = load_dataset('arbml/LK_Hadith')
df = pd.DataFrame(dataset['train'])
# Filter data
filtered_df = df[df['Arabic_Grade'] != 'ΨΆΨΉΩΩ']
documents = list(filtered_df['Arabic_Matn'])
metadatas = [{"Hadith_Grade": grade} for grade in filtered_df['Arabic_Grade']]
# Use CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=10000)
nltk_chunks = text_splitter.create_documents(documents, metadatas=metadatas)
# LLM - Using HuggingFaceHub with API token
llm = HuggingFaceHub(repo_id="salmatrafi/acegpt:7b", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN)
# Create an embedding model
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-base", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN)
docs_text = [doc.page_content for doc in nltk_chunks]
docs_embedding = embeddings.embed_documents(docs_text)
# Create Chroma vector store
vector_store = Chroma.from_documents(nltk_chunks, embedding=embeddings)
# Question answering prompt template
qna_template = "\n".join([
"Answer the next question using the provided context.",
"If the answer is not contained in the context, say 'NO ANSWER IS AVAILABLE'",
"### Context:",
"{context}",
"",
"### Question:",
"{question}",
"",
"### Answer:",
])
qna_prompt = PromptTemplate(
template=qna_template,
input_variables=['context', 'question'],
verbose=True
)
# Combine intermediate context template
combine_template = "\n".join([
"Given intermediate contexts for a question, generate a final answer.",
"If the answer is not contained in the intermediate contexts, say 'NO ANSWER IS AVAILABLE'",
"### Summaries:",
"{summaries}",
"",
"### Question:",
"{question}",
"",
"### Final Answer:",
])
combine_prompt = PromptTemplate(
template=combine_template,
input_variables=['summaries', 'question'],
)
# Load map-reduce chain for question answering
map_reduce_chain = load_qa_chain(llm, chain_type="map_reduce",
return_intermediate_steps=True,
question_prompt=qna_prompt,
combine_prompt=combine_prompt)
# Function to preprocess the query (handling long inputs)
def preprocess_query(query):
if len(query) > 512: # Arbitrary length, adjust based on LLM input limits
query = query[:512] + "..."
return query
# Caching mechanism for frequently asked questions
@lru_cache(maxsize=100) # Cache up to 100 recent queries
def answer_query(query):
query = preprocess_query(query)
try:
# Search for similar documents in vector store
similar_docs = vector_store.similarity_search(query, k=5)
if not similar_docs:
return "No relevant documents found."
# Run map-reduce chain to get the answer
final_answer = map_reduce_chain({
"input_documents": similar_docs,
"question": query
}, return_only_outputs=True)
output_text = final_answer.get('output_text', "No answer generated by the model.")
except Exception as e:
output_text = f"An error occurred: {str(e)}"
return output_text
# Gradio Chatbot response function using Hugging Face Inference Client
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.content
response += token
yield response
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|