plate / app.py
MUHAMMEDHAFEEZ
z
0a77eec
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
pil_img = Image.open(buf)
basewidth = 750
wpercent = (basewidth/float(pil_img.size[0]))
hsize = int((float(pil_img.size[1])*float(wpercent)))
img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS)
return img
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(50, 50))
plt.imshow(img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
if label == 'license-plates':
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=10))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
plt.axis("off")
return fig2img(plt.gcf())
def get_original_image(url_input):
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
return image
def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
if "yolos" in model_name:
model = YolosForObjectDetection.from_pretrained(model_name)
elif "detr" in model_name:
model = DetrForObjectDetection.from_pretrained(model_name)
if validators.url(url_input):
image = get_original_image(url_input)
elif image_input:
image = image_input
elif webcam_input:
image = webcam_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
title = """<h1 id="title">License Plate Detection with MOOD</h1>"""
description = """
MOOD ❤️
"""
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection","nickmuchi/detr-resnet50-license-plate-detection"]
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
facebook_link = """
[![](https://www.facebook.com/profile.php?id=100090906180854)
"""
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(facebook_link)
options = gr.Dropdown(choices=models,label='Object Detection Model',value=models[0],show_label=True)
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image URL'):
with gr.Row():
with gr.Column():
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
original_image = gr.Image(shape=(750,750))
url_input.change(get_original_image, url_input, original_image)
with gr.Column():
img_output_from_url = gr.Image(shape=(750,750))
with gr.Row():
example_url = gr.Examples(examples=urls,inputs=[url_input])
url_but = gr.Button('Detect')
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil',shape=(750,750))
img_output_from_upload= gr.Image(shape=(750,750))
with gr.Row():
example_images = gr.Examples(examples=images,inputs=[img_input])
img_but = gr.Button('Detect')
with gr.TabItem('WebCam'):
with gr.Row():
web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True)
img_output_from_webcam= gr.Image(shape=(750,750))
cam_but = gr.Button('Detect')
url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True)
img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True)
cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True)
demo.launch(debug=True,enable_queue=True)