Spaces:
Sleeping
Sleeping
from langchain.llms import OpenAI | |
from langchain.agents import AgentType, initialize_agent, load_tools | |
from langchain.callbacks import StreamlitCallbackHandler | |
import streamlit as st | |
from langchain_community.llms import LlamaCpp | |
from langchain_community.tools import HumanInputRun | |
# from langchain_community.llms import Ollama | |
from langchain.agents import AgentExecutor, create_react_agent | |
#from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext #Vector store index is for indexing the vector | |
#from llama_index.llms.huggingface import HuggingFaceLLM | |
from langchain_huggingface import HuggingFaceEmbeddings | |
# from langchain_huggingface import HuggingFaceEmbeddings | |
# from langchain_community.embeddings import HuggingFaceInstructEmbeddings,HuggingFaceEmbeddings | |
#from llama_index.core import ServiceContext,Settings | |
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import streamlit as st | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.document_loaders import TextLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.llms import OpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.llms import OpenAI | |
from langchain.agents import load_tools, initialize_agent, Tool | |
from langchain.tools import HumanInputRun | |
from langchain.agents import AgentType | |
from langchain_community.document_loaders import PyPDFDirectoryLoader | |
# from langchain_ollama.llms import OllamaLLM | |
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler | |
from huggingface_hub import snapshot_download | |
from langchain import hub | |
import os | |
def get_input() -> str: | |
if prompt := st.chat_input(): | |
return prompt | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
download = True | |
for file_name in os.listdir("/home/user/app"): | |
if "llama-2-7b-chat.Q5_K_S.gguf" in file_name: | |
download=False | |
if download: | |
snapshot_download(repo_id="TheBloke/Llama-2-7B-Chat-GGUF", allow_patterns="*.Q5_K_S.gguf",local_dir="/home/user/app") | |
llm = LlamaCpp( | |
model_path="/home/user/app/llama-2-7b-chat.Q5_K_S.gguf", | |
n_gpu_layers=-1, | |
n_batch=512, | |
n_ctx=4096, | |
callback_manager=callback_manager, | |
verbose=True, # Verbose is required to pass to the callback manager | |
) | |
# llm = OpenAI(temperature=0, streaming=True) | |
embeddings= HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5") | |
documents = PyPDFDirectoryLoader("/home/user/app").load() | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
db_pdf = FAISS.from_documents(texts, embeddings) | |
db_pdf.save_local("db_pdf") | |
print("whats happenings ") | |
# Creating retrieval QA chains | |
db_pdf_retriever = RetrievalQA.from_chain_type( | |
llm=llm, chain_type="stuff", retriever=db_pdf.as_retriever() | |
) | |
db_pdf_tool = Tool( | |
name="intellify hr policies tool", | |
func=db_pdf_retriever.run, | |
description="useful for when you want to answer any questions on the intellify hr policies.", | |
return_direct=True | |
) | |
human_input = HumanInputRun(input_func=get_input) | |
tools = [ | |
db_pdf_tool, | |
human_input | |
] | |
prompt = hub.pull("hwchase17/react") | |
agent = create_react_agent(llm, tools, prompt) | |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True) | |
# tools = load_tools(["human", ], llm=llm, input_func=get_input) | |
# agent = initialize_agent( | |
# tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True | |
# ) | |
prompt = st.chat_input("Say something") | |
if prompt: | |
with st.chat_message("assistant"): | |
st_callback = StreamlitCallbackHandler(st.container()) | |
response = agent_executor.invoke({"input":prompt},callbacks=[st_callback]) | |
st.write(response) |