Spaces:
Sleeping
Sleeping
File size: 8,368 Bytes
c47c7dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import copy
import torch
from torch import nn
from transformers import AutoModel
from torch.optim import AdamW
from transformers import get_linear_schedule_with_warmup
# from torchcrf import CRF
class MyModel(nn.Module):
def __init__(self, args, backbone):
super().__init__()
self.args = args
self.backbone = backbone
self.cls_id = 0
hidden_dim = self.backbone.config.hidden_size
self.classifier = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(hidden_dim, args.num_labels)
)
if args.distil_att:
self.distil_att = nn.Parameter(torch.ones(self.backbone.config.hidden_size))
def forward(self, x, mask):
x = x.to(self.backbone.device)
mask = mask.to(self.backbone.device)
out = self.backbone(x, attention_mask = mask, output_attentions=True)
return out, self.classifier(out.last_hidden_state)
def decisions(self, x, mask):
x = x.to(self.backbone.device)
mask = mask.to(self.backbone.device)
out = self.backbone(x, attention_mask = mask, output_attentions=False)
return out, self.classifier(out.last_hidden_state)
def phenos(self, x, mask):
x = x.to(self.backbone.device)
mask = mask.to(self.backbone.device)
out = self.backbone(x, attention_mask = mask, output_attentions=True)
return out, self.classifier(out.pooler_output)
def generate(self, x, mask, choice=None):
outs = []
if self.args.task == 'seq' or choice == 'seq':
for i, offset in enumerate(range(0, x.shape[1], self.args.max_len-1)):
if i == 0:
segment = x[:, offset:offset + self.args.max_len-1]
segment_mask = mask[:, offset:offset + self.args.max_len-1]
else:
segment = torch.cat((torch.ones((x.shape[0], 1), dtype=int).to(x.device)\
*self.cls_id,
x[:, offset:offset + self.args.max_len-1]), axis=1)
segment_mask = torch.cat((torch.ones((mask.shape[0], 1)).to(mask.device),
mask[:, offset:offset + self.args.max_len-1]), axis=1)
logits = self.phenos(segment, segment_mask)[1]
outs.append(logits)
return torch.max(torch.stack(outs, 1), 1).values
elif self.args.task == 'token':
for i, offset in enumerate(range(0, x.shape[1], self.args.max_len)):
segment = x[:, offset:offset + self.args.max_len]
segment_mask = mask[:, offset:offset + self.args.max_len]
h = self.decisions(segment, segment_mask)[0].last_hidden_state
outs.append(h)
h = torch.cat(outs, 1)
return self.classifier(h)
class CNN(nn.Module):
def __init__(self, args):
super().__init__()
self.emb = nn.Embedding(args.vocab_size, args.emb_size)
self.model = nn.Sequential(
nn.Conv1d(args.emb_size, args.hidden_size, args.kernels[0],
padding='same' if args.task == 'token' else 'valid'),
nn.ReLU(),
nn.MaxPool1d(1),
nn.Conv1d(args.hidden_size, args.hidden_size, args.kernels[1],
padding='same' if args.task == 'token' else 'valid'),
nn.ReLU(),
nn.MaxPool1d(1),
nn.Conv1d(args.hidden_size, args.hidden_size, args.kernels[2],
padding='same' if args.task == 'token' else 'valid'),
nn.ReLU(),
nn.MaxPool1d(1),
)
if args.task == 'seq':
out_shape = 512 - args.kernels[0] - args.kernels[1] - args.kernels[2] + 3
elif args.task == 'token':
out_shape = 1
self.classifier = nn.Linear(args.hidden_size*out_shape, args.num_labels)
self.dropout = nn.Dropout()
self.args = args
self.device = None
def forward(self, x, _):
x = x.to(self.device)
bs = x.shape[0]
x = self.emb(x)
x = x.transpose(1,2)
x = self.model(x)
x = self.dropout(x)
if self.args.task == 'token':
x = x.transpose(1,2)
h = self.classifier(x)
return x, h
elif self.args.task == 'seq':
x = x.reshape(bs, -1)
x = self.classifier(x)
return x
def generate(self, x, _):
outs = []
for i, offset in enumerate(range(0, x.shape[1], self.args.max_len)):
segment = x[:, offset:offset + self.args.max_len]
n = segment.shape[1]
if n != self.args.max_len:
segment = torch.nn.functional.pad(segment, (0, self.args.max_len - n))
if self.args.task == 'seq':
logits = self(segment, None)
outs.append(logits)
elif self.args.task == 'token':
h = self(segment, None)[0]
h = h[:,:n]
outs.append(h)
if self.args.task == 'seq':
return torch.max(torch.stack(outs, 1), 1).values
elif self.args.task == 'token':
h = torch.cat(outs, 1)
return self.classifier(h)
class LSTM(nn.Module):
def __init__(self, args):
super().__init__()
self.emb = nn.Embedding(args.vocab_size, args.emb_size)
self.model = nn.LSTM(args.emb_size, args.hidden_size, num_layers=args.num_layers,
batch_first=True, bidirectional=True)
dim = 2*args.num_layers*args.hidden_size if args.task == 'seq' else 2*args.hidden_size
self.classifier = nn.Linear(dim, args.num_labels)
self.dropout = nn.Dropout()
self.args = args
self.device = None
def forward(self, x, _):
x = x.to(self.device)
x = self.emb(x)
o, (x, _) = self.model(x)
o_out = self.classifier(o) if self.args.task == 'token' else None
if self.args.task == 'seq':
x = torch.cat([h for h in x], 1)
x = self.dropout(x)
x = self.classifier(x)
return (x, o), o_out
def generate(self, x, _):
outs = []
for i, offset in enumerate(range(0, x.shape[1], self.args.max_len)):
segment = x[:, offset:offset + self.args.max_len]
if self.args.task == 'seq':
logits = self(segment, None)[0][0]
outs.append(logits)
elif self.args.task == 'token':
h = self(segment, None)[0][1]
outs.append(h)
if self.args.task == 'seq':
return torch.max(torch.stack(outs, 1), 1).values
elif self.args.task == 'token':
h = torch.cat(outs, 1)
return self.classifier(h)
def load_model(args, device):
if args.model == 'lstm':
model = LSTM(args).to(device)
model.device = device
elif args.model == 'cnn':
model = CNN(args).to(device)
model.device = device
else:
model = MyModel(args, AutoModel.from_pretrained(args.model_name)).to(device)
if args.ckpt:
model.load_state_dict(torch.load(args.ckpt, map_location=device), strict=False)
if args.distil:
args2 = copy.deepcopy(args)
args2.task = 'token'
# args2.num_labels = args.num_decs
args2.num_labels = args.num_umls_tags
model_B = MyModel(args2, AutoModel.from_pretrained(args.model_name)).to(device)
model_B.load_state_dict(torch.load(args.distil_ckpt, map_location=device), strict=False)
for p in model_B.parameters():
p.requires_grad = False
else:
model_B = None
if args.label_encoding == 'multiclass':
if args.use_crf:
crit = CRF(args.num_labels, batch_first = True).to(device)
else:
crit = nn.CrossEntropyLoss(reduction='none')
else:
crit = nn.BCEWithLogitsLoss(
pos_weight=torch.ones(args.num_labels).to(device)*args.pos_weight,
reduction='none'
)
optimizer = AdamW(model.parameters(), lr=args.lr)
lr_scheduler = get_linear_schedule_with_warmup(optimizer,
int(0.1*args.total_steps), args.total_steps)
return model, crit, optimizer, lr_scheduler, model_B
|