File size: 19,673 Bytes
c47c7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import torch
import json
import os
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer
from glob import glob
from collections.abc import Iterable
from collections import defaultdict


pheno_map = {'alcohol.abuse': 0,
        'advanced.lung.disease': 1,
        'advanced.heart.disease': 2,
        'chronic.pain.fibromyalgia': 3,
        'other.substance.abuse': 4,
        'psychiatric.disorders': 5,
        'obesity': 6,
        'depression': 7,
        'advanced.cancer': 8,
        'chronic.neurological.dystrophies': 9,
        'none': -1}
rev_pheno_map = {v: k for k,v in pheno_map.items()}
valid_cats = range(0,9)

umls_cats = ['T114', 'T029', 'T073', 'T058', 'T191', 'T200', 'T048', 'T019', 'T046', 'T023', 'T041', 'T059', 'T184', 'T034', 'T116', 'T039', 'T127', 'T201', 'T129', 'T067', 'T109', 'T197', 'T131', 'T130', 'T126', 'T061', 'T203', 'T047', 'T037', 'T074', 'T031', 'T195', 'T168'] 
umls_map = {s: i for i,s in enumerate(umls_cats)}

def gen_splits(args, phenos):
    np.random.seed(0)
    if args.task == 'token':
        files = glob(os.path.join(args.data_dir, 'mimic_decisions/data/**/*'))
        if args.use_umls:
            files = ["/".join(x.split('/')[-1:]) for x in files]
        else:
            files = ["/".join(x.split('/')[-2:]) for x in files]
        subjects = np.unique([os.path.basename(x).split('_')[0] for x in files])
    elif phenos is not None:
        subjects = phenos['subject_id'].unique()
    else:
        raise ValueError

    phenos['phenotype_label'] = phenos['phenotype_label'].apply(lambda x: x.lower())

    n = len(subjects)
    train_count = int(0.8*n)
    val_count = int(0.9*n) - int(0.8*n)
    test_count = n - int(0.9*n)

    train, val, test = [], [], []
    np.random.shuffle(subjects)
    subjects = list(subjects)
    pheno_list = set(pheno_map.keys())
    if args.unseen_pheno is not None:
        test_phenos = {rev_pheno_map[args.unseen_pheno]}
        unseen_pheno = rev_pheno_map[args.unseen_pheno]
        train_phenos = pheno_list - test_phenos
    else:
        test_phenos = pheno_list
        train_phenos = pheno_list
        unseen_pheno = 'null'
    while len(subjects) > 0:
        if len(pheno_list) > 0:
            for pheno in pheno_list:
                if len(train) < train_count and pheno in train_phenos:
                    el = None
                    for i, subj in enumerate(subjects):
                        row = phenos[phenos.subject_id == subj]
                        if row['phenotype_label'].apply(lambda x: pheno in x and not unseen_pheno in x).any():
                            el = subjects.pop(i)
                            break
                    if el is not None:
                        train.append(el)
                    elif el is None:
                        pheno_list.remove(pheno)
                        break
                if len(val) < val_count and (not args.pheno_id or len(val) <= (0.5*val_count)):
                    el = None
                    for i, subj in enumerate(subjects):
                        row = phenos[phenos.subject_id == subj]
                        if row['phenotype_label'].apply(lambda x: pheno in x).any():
                            el = subjects.pop(i)
                            break
                    if el is not None:
                        val.append(el)
                    elif el is None:
                        pheno_list.remove(pheno)
                        break
                if len(test) < test_count or (args.unseen_pheno is not None and pheno in test_phenos):
                    el = None
                    for i, subj in enumerate(subjects):
                        row = phenos[phenos.subject_id == subj]
                        if row['phenotype_label'].apply(lambda x: pheno in x).any():
                            el = subjects.pop(i)
                            break
                    if el is not None:
                        test.append(el)
                    elif el is None:
                        pheno_list.remove(pheno)
                        break
        else:
            if len(train) < train_count:
                el = subjects.pop()
                if el is not None:
                    train.append(el)
            if len(val) < val_count:
                el = subjects.pop()
                if el is not None:
                    val.append(el)
            if len(test) < test_count:
                el = subjects.pop()
                if el is not None:
                    test.append(el)

    if args.task == 'token':
        train = [x for x in files if os.path.basename(x).split('_')[0] in train]
        val = [x for x in files if os.path.basename(x).split('_')[0] in val]
        test = [x for x in files if os.path.basename(x).split('_')[0] in test]
    elif phenos is not None:
        train = phenos[phenos.subject_id.isin(train)]
        val = phenos[phenos.subject_id.isin(val)]
        test = phenos[phenos.subject_id.isin(test)]
    return train, val, test

class MyDataset(Dataset):
    def __init__(self, args, tokenizer, data_source, phenos, train = False):
        super().__init__()
        self.tokenizer = tokenizer
        self.data = []
        self.train = train
        self.pheno_ids = defaultdict(list)
        self.dec_ids = {k: [] for k in pheno_map.keys()}

        if args.task == 'seq':
            for i, row in data_source.iterrows():
                sample = self.load_phenos(args, row, i)
                self.data.append(sample)
        else:
            for i, fn in enumerate(data_source):
                sample = self.load_decisions(args, fn, i, phenos)
                self.data.append(sample)

    def load_phenos(self, args, row, idx):
        txt_candidates = glob(os.path.join(args.data_dir,
            f'mimic_decisions/raw_text/{row["subject_id"]}_{row["hadm_id"]}*.txt'))
        text = open(txt_candidates[0]).read()
        if args.pheno_n == 500:

            file_dir = glob(os.path.join(args.data_dir,
                f'mimic_decisions/data/*/{row["subject_id"]}_{row["hadm_id"]}*.json'))[0]
            with open(file_dir) as f:
                data = json.load(f, strict=False)
            annots = data[0]['annotations']

            if args.text_subset:
                unlabeled_text = np.ones(len(text), dtype=bool)
                labeled_text = np.zeros(len(text), dtype=bool)
                for annot in annots:
                    cat = parse_cat(annot['category'])
                    start, end = map(int, (annot['start_offset'], annot['end_offset']))
                    if cat is not None:
                        unlabeled_text[start:end] = 0
                    if cat in args.text_subset:
                        labeled_text[start:end] = 1

                combined_text = unlabeled_text | labeled_text if args.include_nolabel else labeled_text
                text = "".join([c for i,c in enumerate(text) if combined_text[i]])

            encoding = self.tokenizer.encode_plus(text,
                    truncation=args.truncate_train if self.train else args.truncate_eval)

            ids = np.zeros((args.num_decs, len(encoding['input_ids'])))
            for annot in annots:
                start = int(annot['start_offset'])

                enc_start = encoding.char_to_token(start)
                i = 1
                while enc_start is None:
                    enc_start = encoding.char_to_token(start+i)
                    i += 1

                end = int(annot['end_offset'])
                enc_end = encoding.char_to_token(end)
                j = 1
                while enc_end is None:
                    enc_end = encoding.char_to_token(end-j)
                    j += 1

                if enc_start is None or enc_end is None:
                    raise ValueError

                cat = parse_cat(annot['category'])
                if not cat or cat not in valid_cats:
                    continue
                ids[cat-1, enc_start:enc_end] = 1
        else:
            encoding = self.tokenizer.encode_plus(text,
                    truncation=args.truncate_train if self.train else args.truncate_eval)
            ids = None

        labels = np.zeros(args.num_phenos)

        if args.pheno_n in (500, 800):
            sample_phenos = row['phenotype_label']
            if sample_phenos != 'none':
                for pheno in sample_phenos.split(','):
                    labels[pheno_map[pheno.lower()]] = 1

        elif args.pheno_n == 1500:
            for k,v in pheno_map.items():
                if row[k] == 1:
                    labels[v] = 1

        if args.pheno_id is not None:
            if args.pheno_id == -1:
                labels = [0.0 if any(labels) else 1.0]
            else:
                labels = [labels[args.pheno_id]]

        return encoding['input_ids'], labels, ids

    def load_decisions(self, args, fn, idx, phenos):
        basename = os.path.basename(fn).split("-")[0]
        if args.use_umls:
            file_dir = os.path.join(args.data_dir, 'mimic_decisions/umls', basename)
        else:
            file_dir = os.path.join(args.data_dir, 'mimic_decisions/data', fn)

        pheno_id = "_".join(basename.split("_")[:3]) + '.txt'
        txt_candidates = glob(os.path.join(args.data_dir,
            f'mimic_decisions/raw_text/{basename}*.txt'))
        text = open(txt_candidates[0]).read()
        encoding = self.tokenizer.encode_plus(text,
                max_length=args.max_len,
                truncation=args.truncate_train if self.train else args.truncate_eval,
                padding = 'max_length',
                )
        if pheno_id in phenos.index:
            sample_phenos = phenos.loc[pheno_id]['phenotype_label']
            for pheno in sample_phenos.split(','):
                self.pheno_ids[pheno].append(idx)


        with open(file_dir) as f:
            data = json.load(f, strict=False)
        if args.use_umls:
            annots = data
        else:
            annots = data[0]['annotations']
            
        if args.label_encoding == 'multiclass':
            labels = np.full(len(encoding['input_ids']), args.num_labels-1, dtype=int)
        else:
            labels = np.zeros((len(encoding['input_ids']), args.num_labels))
        for annot in annots:
            start = int(annot['start_offset'])

            enc_start = encoding.char_to_token(start)
            i = 1
            while enc_start is None and i < 10:
                enc_start = encoding.char_to_token(start+i)
                i += 1
            if i == 10:
                break

            end = int(annot['end_offset'])
            enc_end = encoding.char_to_token(end)
            j = 1
            while enc_end is None and j < 10:
                enc_end = encoding.char_to_token(end-j)
                j += 1
            if j == 10:
                enc_end = len(encoding.input_ids)

            if enc_start is None or enc_end is None:
                raise ValueError

            if args.label_encoding == 'multiclass' and any([x in [2*y for y in range(args.num_labels//2)] for x in labels[enc_start:enc_end]]):
                    continue

            if args.use_umls:
                cat = umls_map.get(annot['category'], None)
            else:
                cat = parse_cat(annot['category'])
                if cat:
                    cat -= 1
            if cat is None or (not args.use_umls and cat not in valid_cats):
                continue
            if args.label_encoding == 'multiclass':
                cat1 = cat * 2
                cat2 = cat * 2 + 1
                labels[enc_start] = cat1
                labels[enc_start+1:enc_end] = cat2
            elif args.label_encoding == 'bo':
                cat1 = cat * 2
                cat2 = cat * 2 + 1
                labels[enc_start, cat1] = 1
                labels[enc_start+1:enc_end, cat2] = 1
            elif args.label_encoding == 'boe':
                cat1 = cat * 3
                cat2 = cat * 3 + 1
                cat3 = cat * 3 + 2
                labels[enc_start, cat1] = 1
                labels[enc_start+1:enc_end-1, cat2] = 1
                labels[enc_end-1, cat3] = 1
            else:
                labels[enc_start:enc_end, cat] = 1

        return {'input_ids': encoding['input_ids'], 'labels': labels, 't2c': encoding.token_to_chars}


    def __getitem__(self, idx):
        return self.data[idx]

    def __len__(self):
        return len(self.data)

def parse_cat(cat):
    for i,c in enumerate(cat):
        if c.isnumeric():
            if cat[i+1].isnumeric():
                return int(cat[i:i+2])
            return int(c)
    return None


def load_phenos(args):
    if args.pheno_n == 500:
        phenos = pd.read_csv(os.path.join(args.data_dir,
            'mimic_decisions/phenos500'),
            sep='\t').rename(lambda x: x.strip(), axis=1)
        phenos['raw_text'] = phenos['raw_text'].apply(lambda x: os.path.basename(x))
        phenos[['SUBJECT_ID', 'HADM_ID', 'ROW_ID']] = \
            [os.path.splitext(x)[0].split('_')[:3] for x in phenos['raw_text']]
        phenos = phenos[phenos['phenotype_label'] != '?']
    elif args.pheno_n == 800:
        phenos = pd.read_csv(os.path.join(args.data_dir, 'mimic_decisions/phenos800.csv'))
        phenos.rename({'Ham_ID': 'HADM_ID'}, inplace=True, axis=1)
        phenos = phenos[phenos.phenotype_label != '?']
    elif args.pheno_n == 1500:
        phenos = pd.read_csv(os.path.join(args.data_dir, 'mimic_decisions/phenos1500.csv'))
        phenos.rename({'Hospital.Admission.ID': 'HADM_ID',
            'subject.id': 'SUBJECT_ID'}, inplace=True, axis=1)
        phenos = phenos[phenos.Unsure != 1]
        phenos['psychiatric.disorders'] = phenos['Dementia']\
                                        | phenos['Developmental.Delay.Retardation']\
                                        | phenos['Schizophrenia.and.other.Psychiatric.Disorders']
    else:
        raise ValueError
    phenos.rename(lambda k: k.lower(), inplace=True, axis = 1)
    return phenos

def downsample(dataset):
    data = dataset.data
    class0 = [x for x in data if x[1][0] == 0]
    class1 = [x for x in data if x[1][0] == 1]

    if len(class0) > len(class1):
        class0 = resample(class0, replace=False, n_samples=len(class1), random_state=0)
    else:
        class1 = resample(class1, replace=False, n_samples=len(class0), random_state=0)
    dataset.data = class0 + class1

def upsample(dataset):
    data = dataset.data
    class0 = [x for x in data if x[1][0] == 0]
    class1 = [x for x in data if x[1][0] == 1]

    if len(class0) > len(class1):
        class1 = resample(class1, replace=True, n_samples=len(class0), random_state=0)
    else:
        class0 = resample(class0, replace=True, n_samples=len(class1), random_state=0)
    dataset.data = class0 + class1

def load_tokenizer(name):
    return AutoTokenizer.from_pretrained(name)

def load_data(args):
    from sklearn.utils import resample
    def collate_segment(batch):
        xs = []
        ys = []
        t2cs = []
        has_ids = 'ids' in batch[0]
        if has_ids:
            idss = []
        else:
            ids = None
        masks = []
        for i in range(len(batch)):
            x = batch[i]['input_ids']
            y = batch[i]['labels']
            if has_ids:
                ids = batch[i]['ids']
            n = len(x)
            if n > args.max_len:
                start = np.random.randint(0, n - args.max_len + 1)
                x = x[start:start + args.max_len]
                if args.task == 'token':
                    y = y[start:start + args.max_len]
                if has_ids:
                    new_ids = []
                    ids = [x[start:start + args.max_len] for x in ids]
                    for subids in ids:
                        subids = [idx for idx, x in enumerate(subids) if x]
                        new_ids.append(subids)
                    all_ids = set([y for x in new_ids for y in x])
                    nones = set(range(args.max_len)) - all_ids
                    new_ids.append(list(nones))
                mask = [1] * args.max_len
            elif n < args.max_len:
                x = np.pad(x, (0, args.max_len - n))
                if args.task == 'token':
                    y = np.pad(y, ((0, args.max_len - n), (0, 0)))
                mask = [1] * n + [0] * (args.max_len - n)
            else:
                mask = [1] * n
            xs.append(x)
            ys.append(y)
            t2cs.append(batch[i]['t2c'])
            if has_ids:
                idss.append(new_ids)
            masks.append(mask)

        xs = torch.tensor(xs)
        ys = torch.tensor(ys)
        masks = torch.tensor(masks)
        return {'input_ids': xs, 'labels': ys, 'ids': ids, 'mask': masks, 't2c': t2cs}

    def collate_full(batch):
        lens = [len(x['input_ids']) for x in batch]
        max_len = max(args.max_len, max(lens))
        for i in range(len(batch)):
            batch[i]['input_ids'] = np.pad(batch[i]['input_ids'], (0, max_len - lens[i]))
            if args.task == 'token':
                if args.label_encoding == 'multiclass':
                    batch[i]['labels'] = np.pad(batch[i]['labels'], (0, max_len - lens[i]), constant_values=-100)
                else:
                    batch[i]['labels'] = np.pad(batch[i]['labels'], ((0, max_len - lens[i]), (0, 0)))
            mask = [1] * lens[i] + [0] * (max_len - lens[i])
            batch[i]['mask'] = mask

        batch = {k: torch.tensor(np.array([sample[k] for sample in batch])) if isinstance(batch[0][k], Iterable) else
                [sample[k] for sample in batch]
                for k in batch[0].keys()}
        return batch

    tokenizer = load_tokenizer(args.model_name)
    args.vocab_size = tokenizer.vocab_size
    args.max_length = min(tokenizer.model_max_length, 512)

    if args.mimic_data:
        from datasets import Dataset
        df = pd.read_csv('/data/mohamed/data/mimiciii/NOTEEVENTS.csv.gz',
                usecols=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'TEXT'])
        data = Dataset.from_pandas(df)
        return data, tokenizer
    else:
        phenos = load_phenos(args)
        train_files, val_files, test_files = gen_splits(args, phenos)
        phenos.set_index('raw_text', inplace=True)
        train_dataset = MyDataset(args, tokenizer, train_files, phenos, train=True)

        if args.resample == 'down':
            downsample(train_dataset)
        elif args.resample == 'up':
            upsample(train_dataset)
        val_dataset = MyDataset(args, tokenizer, val_files, phenos)
        test_dataset = MyDataset(args, tokenizer, test_files, phenos)
        print('Train dataset:', len(train_dataset))
        print('Val dataset:', len(val_dataset))
        print('Test dataset:', len(test_dataset))
        train_ns = DataLoader(train_dataset, 1, False,
                collate_fn=collate_full,
                )
        train_dataloader = DataLoader(train_dataset, args.batch_size, True,
                collate_fn=collate_segment,
                )
        val_dataloader = DataLoader(val_dataset, 1, False, collate_fn=collate_full)
        test_dataloader = DataLoader(test_dataset, 1, False, collate_fn=collate_full)

        train_files = [os.path.basename(x).split('-')[0] for x in train_files]
        val_files = [os.path.basename(x).split('-')[0] for x in val_files]
        test_files = [os.path.basename(x).split('-')[0] for x in test_files]

        return train_dataloader, val_dataloader, test_dataloader, train_ns, [train_files, val_files, test_files]