Spaces:
Running
Running
File size: 19,673 Bytes
c47c7dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import torch
import json
import os
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer
from glob import glob
from collections.abc import Iterable
from collections import defaultdict
pheno_map = {'alcohol.abuse': 0,
'advanced.lung.disease': 1,
'advanced.heart.disease': 2,
'chronic.pain.fibromyalgia': 3,
'other.substance.abuse': 4,
'psychiatric.disorders': 5,
'obesity': 6,
'depression': 7,
'advanced.cancer': 8,
'chronic.neurological.dystrophies': 9,
'none': -1}
rev_pheno_map = {v: k for k,v in pheno_map.items()}
valid_cats = range(0,9)
umls_cats = ['T114', 'T029', 'T073', 'T058', 'T191', 'T200', 'T048', 'T019', 'T046', 'T023', 'T041', 'T059', 'T184', 'T034', 'T116', 'T039', 'T127', 'T201', 'T129', 'T067', 'T109', 'T197', 'T131', 'T130', 'T126', 'T061', 'T203', 'T047', 'T037', 'T074', 'T031', 'T195', 'T168']
umls_map = {s: i for i,s in enumerate(umls_cats)}
def gen_splits(args, phenos):
np.random.seed(0)
if args.task == 'token':
files = glob(os.path.join(args.data_dir, 'mimic_decisions/data/**/*'))
if args.use_umls:
files = ["/".join(x.split('/')[-1:]) for x in files]
else:
files = ["/".join(x.split('/')[-2:]) for x in files]
subjects = np.unique([os.path.basename(x).split('_')[0] for x in files])
elif phenos is not None:
subjects = phenos['subject_id'].unique()
else:
raise ValueError
phenos['phenotype_label'] = phenos['phenotype_label'].apply(lambda x: x.lower())
n = len(subjects)
train_count = int(0.8*n)
val_count = int(0.9*n) - int(0.8*n)
test_count = n - int(0.9*n)
train, val, test = [], [], []
np.random.shuffle(subjects)
subjects = list(subjects)
pheno_list = set(pheno_map.keys())
if args.unseen_pheno is not None:
test_phenos = {rev_pheno_map[args.unseen_pheno]}
unseen_pheno = rev_pheno_map[args.unseen_pheno]
train_phenos = pheno_list - test_phenos
else:
test_phenos = pheno_list
train_phenos = pheno_list
unseen_pheno = 'null'
while len(subjects) > 0:
if len(pheno_list) > 0:
for pheno in pheno_list:
if len(train) < train_count and pheno in train_phenos:
el = None
for i, subj in enumerate(subjects):
row = phenos[phenos.subject_id == subj]
if row['phenotype_label'].apply(lambda x: pheno in x and not unseen_pheno in x).any():
el = subjects.pop(i)
break
if el is not None:
train.append(el)
elif el is None:
pheno_list.remove(pheno)
break
if len(val) < val_count and (not args.pheno_id or len(val) <= (0.5*val_count)):
el = None
for i, subj in enumerate(subjects):
row = phenos[phenos.subject_id == subj]
if row['phenotype_label'].apply(lambda x: pheno in x).any():
el = subjects.pop(i)
break
if el is not None:
val.append(el)
elif el is None:
pheno_list.remove(pheno)
break
if len(test) < test_count or (args.unseen_pheno is not None and pheno in test_phenos):
el = None
for i, subj in enumerate(subjects):
row = phenos[phenos.subject_id == subj]
if row['phenotype_label'].apply(lambda x: pheno in x).any():
el = subjects.pop(i)
break
if el is not None:
test.append(el)
elif el is None:
pheno_list.remove(pheno)
break
else:
if len(train) < train_count:
el = subjects.pop()
if el is not None:
train.append(el)
if len(val) < val_count:
el = subjects.pop()
if el is not None:
val.append(el)
if len(test) < test_count:
el = subjects.pop()
if el is not None:
test.append(el)
if args.task == 'token':
train = [x for x in files if os.path.basename(x).split('_')[0] in train]
val = [x for x in files if os.path.basename(x).split('_')[0] in val]
test = [x for x in files if os.path.basename(x).split('_')[0] in test]
elif phenos is not None:
train = phenos[phenos.subject_id.isin(train)]
val = phenos[phenos.subject_id.isin(val)]
test = phenos[phenos.subject_id.isin(test)]
return train, val, test
class MyDataset(Dataset):
def __init__(self, args, tokenizer, data_source, phenos, train = False):
super().__init__()
self.tokenizer = tokenizer
self.data = []
self.train = train
self.pheno_ids = defaultdict(list)
self.dec_ids = {k: [] for k in pheno_map.keys()}
if args.task == 'seq':
for i, row in data_source.iterrows():
sample = self.load_phenos(args, row, i)
self.data.append(sample)
else:
for i, fn in enumerate(data_source):
sample = self.load_decisions(args, fn, i, phenos)
self.data.append(sample)
def load_phenos(self, args, row, idx):
txt_candidates = glob(os.path.join(args.data_dir,
f'mimic_decisions/raw_text/{row["subject_id"]}_{row["hadm_id"]}*.txt'))
text = open(txt_candidates[0]).read()
if args.pheno_n == 500:
file_dir = glob(os.path.join(args.data_dir,
f'mimic_decisions/data/*/{row["subject_id"]}_{row["hadm_id"]}*.json'))[0]
with open(file_dir) as f:
data = json.load(f, strict=False)
annots = data[0]['annotations']
if args.text_subset:
unlabeled_text = np.ones(len(text), dtype=bool)
labeled_text = np.zeros(len(text), dtype=bool)
for annot in annots:
cat = parse_cat(annot['category'])
start, end = map(int, (annot['start_offset'], annot['end_offset']))
if cat is not None:
unlabeled_text[start:end] = 0
if cat in args.text_subset:
labeled_text[start:end] = 1
combined_text = unlabeled_text | labeled_text if args.include_nolabel else labeled_text
text = "".join([c for i,c in enumerate(text) if combined_text[i]])
encoding = self.tokenizer.encode_plus(text,
truncation=args.truncate_train if self.train else args.truncate_eval)
ids = np.zeros((args.num_decs, len(encoding['input_ids'])))
for annot in annots:
start = int(annot['start_offset'])
enc_start = encoding.char_to_token(start)
i = 1
while enc_start is None:
enc_start = encoding.char_to_token(start+i)
i += 1
end = int(annot['end_offset'])
enc_end = encoding.char_to_token(end)
j = 1
while enc_end is None:
enc_end = encoding.char_to_token(end-j)
j += 1
if enc_start is None or enc_end is None:
raise ValueError
cat = parse_cat(annot['category'])
if not cat or cat not in valid_cats:
continue
ids[cat-1, enc_start:enc_end] = 1
else:
encoding = self.tokenizer.encode_plus(text,
truncation=args.truncate_train if self.train else args.truncate_eval)
ids = None
labels = np.zeros(args.num_phenos)
if args.pheno_n in (500, 800):
sample_phenos = row['phenotype_label']
if sample_phenos != 'none':
for pheno in sample_phenos.split(','):
labels[pheno_map[pheno.lower()]] = 1
elif args.pheno_n == 1500:
for k,v in pheno_map.items():
if row[k] == 1:
labels[v] = 1
if args.pheno_id is not None:
if args.pheno_id == -1:
labels = [0.0 if any(labels) else 1.0]
else:
labels = [labels[args.pheno_id]]
return encoding['input_ids'], labels, ids
def load_decisions(self, args, fn, idx, phenos):
basename = os.path.basename(fn).split("-")[0]
if args.use_umls:
file_dir = os.path.join(args.data_dir, 'mimic_decisions/umls', basename)
else:
file_dir = os.path.join(args.data_dir, 'mimic_decisions/data', fn)
pheno_id = "_".join(basename.split("_")[:3]) + '.txt'
txt_candidates = glob(os.path.join(args.data_dir,
f'mimic_decisions/raw_text/{basename}*.txt'))
text = open(txt_candidates[0]).read()
encoding = self.tokenizer.encode_plus(text,
max_length=args.max_len,
truncation=args.truncate_train if self.train else args.truncate_eval,
padding = 'max_length',
)
if pheno_id in phenos.index:
sample_phenos = phenos.loc[pheno_id]['phenotype_label']
for pheno in sample_phenos.split(','):
self.pheno_ids[pheno].append(idx)
with open(file_dir) as f:
data = json.load(f, strict=False)
if args.use_umls:
annots = data
else:
annots = data[0]['annotations']
if args.label_encoding == 'multiclass':
labels = np.full(len(encoding['input_ids']), args.num_labels-1, dtype=int)
else:
labels = np.zeros((len(encoding['input_ids']), args.num_labels))
for annot in annots:
start = int(annot['start_offset'])
enc_start = encoding.char_to_token(start)
i = 1
while enc_start is None and i < 10:
enc_start = encoding.char_to_token(start+i)
i += 1
if i == 10:
break
end = int(annot['end_offset'])
enc_end = encoding.char_to_token(end)
j = 1
while enc_end is None and j < 10:
enc_end = encoding.char_to_token(end-j)
j += 1
if j == 10:
enc_end = len(encoding.input_ids)
if enc_start is None or enc_end is None:
raise ValueError
if args.label_encoding == 'multiclass' and any([x in [2*y for y in range(args.num_labels//2)] for x in labels[enc_start:enc_end]]):
continue
if args.use_umls:
cat = umls_map.get(annot['category'], None)
else:
cat = parse_cat(annot['category'])
if cat:
cat -= 1
if cat is None or (not args.use_umls and cat not in valid_cats):
continue
if args.label_encoding == 'multiclass':
cat1 = cat * 2
cat2 = cat * 2 + 1
labels[enc_start] = cat1
labels[enc_start+1:enc_end] = cat2
elif args.label_encoding == 'bo':
cat1 = cat * 2
cat2 = cat * 2 + 1
labels[enc_start, cat1] = 1
labels[enc_start+1:enc_end, cat2] = 1
elif args.label_encoding == 'boe':
cat1 = cat * 3
cat2 = cat * 3 + 1
cat3 = cat * 3 + 2
labels[enc_start, cat1] = 1
labels[enc_start+1:enc_end-1, cat2] = 1
labels[enc_end-1, cat3] = 1
else:
labels[enc_start:enc_end, cat] = 1
return {'input_ids': encoding['input_ids'], 'labels': labels, 't2c': encoding.token_to_chars}
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
def parse_cat(cat):
for i,c in enumerate(cat):
if c.isnumeric():
if cat[i+1].isnumeric():
return int(cat[i:i+2])
return int(c)
return None
def load_phenos(args):
if args.pheno_n == 500:
phenos = pd.read_csv(os.path.join(args.data_dir,
'mimic_decisions/phenos500'),
sep='\t').rename(lambda x: x.strip(), axis=1)
phenos['raw_text'] = phenos['raw_text'].apply(lambda x: os.path.basename(x))
phenos[['SUBJECT_ID', 'HADM_ID', 'ROW_ID']] = \
[os.path.splitext(x)[0].split('_')[:3] for x in phenos['raw_text']]
phenos = phenos[phenos['phenotype_label'] != '?']
elif args.pheno_n == 800:
phenos = pd.read_csv(os.path.join(args.data_dir, 'mimic_decisions/phenos800.csv'))
phenos.rename({'Ham_ID': 'HADM_ID'}, inplace=True, axis=1)
phenos = phenos[phenos.phenotype_label != '?']
elif args.pheno_n == 1500:
phenos = pd.read_csv(os.path.join(args.data_dir, 'mimic_decisions/phenos1500.csv'))
phenos.rename({'Hospital.Admission.ID': 'HADM_ID',
'subject.id': 'SUBJECT_ID'}, inplace=True, axis=1)
phenos = phenos[phenos.Unsure != 1]
phenos['psychiatric.disorders'] = phenos['Dementia']\
| phenos['Developmental.Delay.Retardation']\
| phenos['Schizophrenia.and.other.Psychiatric.Disorders']
else:
raise ValueError
phenos.rename(lambda k: k.lower(), inplace=True, axis = 1)
return phenos
def downsample(dataset):
data = dataset.data
class0 = [x for x in data if x[1][0] == 0]
class1 = [x for x in data if x[1][0] == 1]
if len(class0) > len(class1):
class0 = resample(class0, replace=False, n_samples=len(class1), random_state=0)
else:
class1 = resample(class1, replace=False, n_samples=len(class0), random_state=0)
dataset.data = class0 + class1
def upsample(dataset):
data = dataset.data
class0 = [x for x in data if x[1][0] == 0]
class1 = [x for x in data if x[1][0] == 1]
if len(class0) > len(class1):
class1 = resample(class1, replace=True, n_samples=len(class0), random_state=0)
else:
class0 = resample(class0, replace=True, n_samples=len(class1), random_state=0)
dataset.data = class0 + class1
def load_tokenizer(name):
return AutoTokenizer.from_pretrained(name)
def load_data(args):
from sklearn.utils import resample
def collate_segment(batch):
xs = []
ys = []
t2cs = []
has_ids = 'ids' in batch[0]
if has_ids:
idss = []
else:
ids = None
masks = []
for i in range(len(batch)):
x = batch[i]['input_ids']
y = batch[i]['labels']
if has_ids:
ids = batch[i]['ids']
n = len(x)
if n > args.max_len:
start = np.random.randint(0, n - args.max_len + 1)
x = x[start:start + args.max_len]
if args.task == 'token':
y = y[start:start + args.max_len]
if has_ids:
new_ids = []
ids = [x[start:start + args.max_len] for x in ids]
for subids in ids:
subids = [idx for idx, x in enumerate(subids) if x]
new_ids.append(subids)
all_ids = set([y for x in new_ids for y in x])
nones = set(range(args.max_len)) - all_ids
new_ids.append(list(nones))
mask = [1] * args.max_len
elif n < args.max_len:
x = np.pad(x, (0, args.max_len - n))
if args.task == 'token':
y = np.pad(y, ((0, args.max_len - n), (0, 0)))
mask = [1] * n + [0] * (args.max_len - n)
else:
mask = [1] * n
xs.append(x)
ys.append(y)
t2cs.append(batch[i]['t2c'])
if has_ids:
idss.append(new_ids)
masks.append(mask)
xs = torch.tensor(xs)
ys = torch.tensor(ys)
masks = torch.tensor(masks)
return {'input_ids': xs, 'labels': ys, 'ids': ids, 'mask': masks, 't2c': t2cs}
def collate_full(batch):
lens = [len(x['input_ids']) for x in batch]
max_len = max(args.max_len, max(lens))
for i in range(len(batch)):
batch[i]['input_ids'] = np.pad(batch[i]['input_ids'], (0, max_len - lens[i]))
if args.task == 'token':
if args.label_encoding == 'multiclass':
batch[i]['labels'] = np.pad(batch[i]['labels'], (0, max_len - lens[i]), constant_values=-100)
else:
batch[i]['labels'] = np.pad(batch[i]['labels'], ((0, max_len - lens[i]), (0, 0)))
mask = [1] * lens[i] + [0] * (max_len - lens[i])
batch[i]['mask'] = mask
batch = {k: torch.tensor(np.array([sample[k] for sample in batch])) if isinstance(batch[0][k], Iterable) else
[sample[k] for sample in batch]
for k in batch[0].keys()}
return batch
tokenizer = load_tokenizer(args.model_name)
args.vocab_size = tokenizer.vocab_size
args.max_length = min(tokenizer.model_max_length, 512)
if args.mimic_data:
from datasets import Dataset
df = pd.read_csv('/data/mohamed/data/mimiciii/NOTEEVENTS.csv.gz',
usecols=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'TEXT'])
data = Dataset.from_pandas(df)
return data, tokenizer
else:
phenos = load_phenos(args)
train_files, val_files, test_files = gen_splits(args, phenos)
phenos.set_index('raw_text', inplace=True)
train_dataset = MyDataset(args, tokenizer, train_files, phenos, train=True)
if args.resample == 'down':
downsample(train_dataset)
elif args.resample == 'up':
upsample(train_dataset)
val_dataset = MyDataset(args, tokenizer, val_files, phenos)
test_dataset = MyDataset(args, tokenizer, test_files, phenos)
print('Train dataset:', len(train_dataset))
print('Val dataset:', len(val_dataset))
print('Test dataset:', len(test_dataset))
train_ns = DataLoader(train_dataset, 1, False,
collate_fn=collate_full,
)
train_dataloader = DataLoader(train_dataset, args.batch_size, True,
collate_fn=collate_segment,
)
val_dataloader = DataLoader(val_dataset, 1, False, collate_fn=collate_full)
test_dataloader = DataLoader(test_dataset, 1, False, collate_fn=collate_full)
train_files = [os.path.basename(x).split('-')[0] for x in train_files]
val_files = [os.path.basename(x).split('-')[0] for x in val_files]
test_files = [os.path.basename(x).split('-')[0] for x in test_files]
return train_dataloader, val_dataloader, test_dataloader, train_ns, [train_files, val_files, test_files]
|