File size: 13,110 Bytes
59dd739
c47c7dc
 
59dd739
c47c7dc
 
59dd739
 
 
c47c7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59dd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47c7dc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import re
import argparse
import torch
import gradio as gr
from data import load_tokenizer
from model import load_model
from datetime import datetime
from dateutil import parser
from demo_assets import *

parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='/data/mohamed/data')
parser.add_argument('--aim_repo', default='/data/mohamed/')
parser.add_argument('--ckpt', default='electra-base.pt')
parser.add_argument('--aim_exp', default='mimic-decisions-1215')
parser.add_argument('--label_encoding', default='multiclass')
parser.add_argument('--multiclass', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_losses', action='store_true')
parser.add_argument('--task', default='token', choices=['seq', 'token'])
parser.add_argument('--max_len', type=int, default=512)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--kernels', nargs=3, type=int, default=[1,2,3])
parser.add_argument('--model', default='roberta-base',)
parser.add_argument('--model_name', default='google/electra-base-discriminator',)
parser.add_argument('--gpu', default='0')
parser.add_argument('--grad_accumulation', default=2, type=int)
parser.add_argument('--pheno_id', type=int)
parser.add_argument('--unseen_pheno', type=int)
parser.add_argument('--text_subset')
parser.add_argument('--pheno_n', type=int, default=500)
parser.add_argument('--hidden_size', type=int, default=100)
parser.add_argument('--emb_size', type=int, default=400)
parser.add_argument('--total_steps', type=int, default=5000)
parser.add_argument('--train_log', type=int, default=500)
parser.add_argument('--val_log', type=int, default=1000)
parser.add_argument('--seed', default = '0')
parser.add_argument('--num_phenos', type=int, default=10)
parser.add_argument('--num_decs', type=int, default=9)
parser.add_argument('--num_umls_tags', type=int, default=33)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--pos_weight', type=float, default=1.25)
parser.add_argument('--alpha_distil', type=float, default=1)
parser.add_argument('--distil', action='store_true')
parser.add_argument('--distil_att', action='store_true')
parser.add_argument('--distil_ckpt')
parser.add_argument('--use_umls', action='store_true')
parser.add_argument('--include_nolabel', action='store_true')
parser.add_argument('--truncate_train', action='store_true')
parser.add_argument('--truncate_eval', action='store_true')
parser.add_argument('--load_ckpt', action='store_true')
parser.add_argument('--gradio', action='store_true')
parser.add_argument('--optuna', action='store_true')
parser.add_argument('--mimic_data', action='store_true')
parser.add_argument('--eval_only', action='store_true')
parser.add_argument('--lr', type=float, default=4e-5)
parser.add_argument('--resample', default='')
parser.add_argument('--verbose', type=bool, default=True)
parser.add_argument('--use_crf', type=bool)
parser.add_argument('--print_spans', action='store_true')
args = parser.parse_args()

if args.task == 'seq' and args.pheno_id is not None:
    args.num_labels = 1
elif args.task == 'seq':
    args.num_labels = args.num_phenos
elif args.task == 'token':
    if args.use_umls:
        args.num_labels = args.num_umls_tags
    else:
        args.num_labels = args.num_decs
    if args.label_encoding == 'multiclass':
        args.num_labels = args.num_labels * 2 + 1
    elif args.label_encoding == 'bo':
        args.num_labels *= 2
    elif args.label_encoding == 'boe':
        args.num_labels *= 3

categories = ['Contact related', 'Gathering additional information', 'Defining problem',
        'Treatment goal', 'Drug related', 'Therapeutic procedure related', 'Evaluating test result',
        'Deferment', 'Advice and precaution', 'Legal and insurance related']
unicode_symbols = [
        "\U0001F91D",  # Handshake
        "\U0001F50D",  # Magnifying glass
        "\U0001F9E9",  # Puzzle piece
        "\U0001F3AF",  # Target
        "\U0001F48A",  # Pill
        "\U00002702",  # Surgical scissors
        "\U0001F9EA",  # Test tube
        "\U000023F0",  # Alarm clock
        "\U000026A0",  # Warning sign
        "\U0001F4C4"   # Document
        ]

OTHERS_ID = 18
def postprocess_labels(text, logits, t2c):
    tags = [None for _ in text]
    labels = logits.argmax(-1)
    for i,cat in enumerate(labels):
        if cat != OTHERS_ID:
            char_ids = t2c(i)
            if char_ids is None:
                continue
            for idx in range(char_ids.start, char_ids.end):
                if tags[idx] is None and idx < len(text):
                    tags[idx] = categories[cat // 2]
    for i in range(len(text)-1):
        if text[i] == ' ' and (text[i+1] == ' ' or tags[i-1] == tags[i+1]):
            tags[i] = tags[i-1]
    return tags

def indicators_to_spans(labels, t2c = None):
    def add_span(c, start, end):
        if t2c(start) is None or t2c(end) is None:
            start, end = -1, -1
        else:
            start = t2c(start).start
            end = t2c(end).end
        span = (c, start, end)
        spans.add(span)

    spans = set()
    num_tokens = len(labels)
    num_classes = OTHERS_ID // 2
    start = None
    cls = None
    for t in range(num_tokens):
        if start and labels[t] == cls + 1:
            continue
        elif start:
            add_span(cls // 2, start, t - 1)
            start = None
        # if not start and labels[t] in [2*x for x in range(num_classes)]:
        if not start and labels[t] != OTHERS_ID:
            start = t
            cls = int(labels[t]) // 2 * 2
    return spans

def extract_date(text):
    pattern = r'(?<=Date: )\s*(\[\*\*.*?\*\*\]|\d{1,4}[-/]\d{1,2}[-/]\d{1,4})'
    match = re.search(pattern, text).group(1)
    start, end = None, None
    for i, c in enumerate(match):
        if start is None and c.isnumeric():
            start = i
        elif c.isnumeric():
            end = i + 1
    match = match[start:end]
    return match



def run_gradio(model, tokenizer):
    def predict(text):
        encoding = tokenizer.encode_plus(text)
        x = torch.tensor(encoding['input_ids']).unsqueeze(0).to(device)
        mask = torch.ones_like(x)
        output = model.generate(x, mask)[0]
        return output, encoding.token_to_chars

    def process(text):
        if text is not None:
            output, t2c = predict(text)
            tags = postprocess_labels(text, output, t2c)
            with open('log.csv', 'a') as f:
                f.write(f'{datetime.now()},{text}\n')
            return list(zip(text, tags))
        else:
            return text

    def process_sum(*inputs):
        global sum_c
        dates = {}
        for i in range(sum_c):
            text = inputs[i]
            output, t2c = predict(text)
            spans = indicators_to_spans(output.argmax(-1), t2c)
            date = extract_date(text)
            present_decs = set(cat for cat, _, _ in spans)
            decs = {k: [] for k in sorted(present_decs)}
            for c, s, e in spans:
                decs[c].append(text[s:e])
            dates[date] = decs

        out = ""
        for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
            out += f'## **[{date}]**\n\n'
            decs = dates[date]
            for c in decs:
                out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
                for dec in decs[c]:
                    out += f'{dec}\n\n'

        return out

    global sum_c
    sum_c = 1
    SUM_INPUTS = 20
    def update_inputs(inputs):
        outputs = []
        if inputs is None:
            c = 0
        else:
            inputs = [open(f.name).read() for f in inputs]
            for i, text in enumerate(inputs):
                outputs.append(gr.update(value=text, visible=True))
            c = len(inputs)

        n = SUM_INPUTS
        for i in range(n - c):
            outputs.append(gr.update(value='', visible=False))
        global sum_c; sum_c = c
        return outputs

    def add_ex(*inputs):
        global sum_c
        new_idx = sum_c
        if new_idx < SUM_INPUTS:
            out = inputs[:new_idx] + (gr.update(visible=True),) + inputs[new_idx+1:]
            sum_c += 1
        else:
            out = inputs
        return out

    def sub_ex(*inputs):
        global sum_c
        new_idx = sum_c - 1
        if new_idx > 0:
            out = inputs[:new_idx] + (gr.update(visible=False),) + inputs[new_idx+1:]
            sum_c -= 1
        else:
            out = inputs
        return out


    device = model.backbone.device
    # colors = ['aqua', 'blue', 'fuchsia', 'teal', 'green', 'olive', 'lime', 'silver', 'purple', 'red',
    #         'yellow', 'navy', 'gray', 'white', 'maroon', 'black']
    colors = ['#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#d9d9d9', '#bc80bd']

    color_map = {cat: colors[i] for i,cat in enumerate(categories)}

    det_desc = ['Admit, discharge, follow-up, referral', 
            'Ordering test, consulting colleague, seeking external information',
            'Diagnostic conclusion, evaluation of health state, etiological inference, prognostic judgment',
            'Quantitative or qualitative',
            'Start, stop, alter, maintain, refrain',
            'Start, stop, alter, maintain, refrain',
            'Positive, negative, ambiguous test results',
            'Transfer responsibility, wait and see, change subject',
            'Advice or precaution',
            'Sick leave, drug refund, insurance, disability']

    desc = '### Zones (categories)\n'
    desc += '| | |\n| --- | --- |\n'
    for i,cat in enumerate(categories):
        desc += f'| {unicode_symbols[i]} **{cat}** | {det_desc[i]}|\n'

    #colors
    #markdown labels
    #legend and desc
    #css font-size
    css = '.category-legend {border:1px dashed black;}'\
            '.text-sm {font-size: 1.5rem; line-height: 200%;}'\
            '.gr-sample-textbox {width: 1000px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}'\
            '.text-limit label textarea {height: 150px !important; overflow: scroll; }'\
            '.text-gray-500 {color: #111827; font-weight: 600; font-size: 1.25em; margin-top: 1.6em; margin-bottom: 0.6em;'\
                    'line-height: 1.6;}'\
            '#sum-out {border: 2px solid #007bff; padding: 20px; border-radius: 10px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);'
    title='Clinical Decision Zoning'
    with gr.Blocks(title=title, css=css) as demo:
        gr.Markdown(f'# {title}')
        with gr.Tab("Label a Clinical Note"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("## Enter a Discharge Summary or Clinical Note"),
                    text_input = gr.Textbox(
                            # value=examples[0],
                            label="",
                            placeholder="Enter text here...")
                    text_btn = gr.Button('Run')
                with gr.Column():
                    gr.Markdown("## Labeled Summary or Note"),
                    text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
            gr.Examples(text_examples, inputs=text_input)
        with gr.Tab("Summarize Patient History"):
            with gr.Row():
                with gr.Column():
                    sum_inputs = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
                    sum_inputs.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
                        for i in range(2, SUM_INPUTS + 1)])
                    sum_btn = gr.Button('Run')
                    with gr.Row():
                        ex_add = gr.Button("+")
                        ex_sub = gr.Button("-")
                    upload = gr.File(label='Upload clinical notes', file_type='text', file_count='multiple')
                    gr.Examples(sum_examples, inputs=upload,
                            fn = update_inputs, outputs=sum_inputs, run_on_click=True)
                with gr.Column():
                    gr.Markdown("## Summarized Clinical Decision History")
                    sum_out = gr.Markdown(elem_id='sum-out')
        gr.Markdown(desc)

        # Functions
        text_input.submit(process, inputs=text_input, outputs=text_out)
        text_btn.click(process, inputs=text_input, outputs=text_out)
        upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
        ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
        ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
        sum_btn.click(process_sum, inputs=sum_inputs, outputs=sum_out)
    # demo = gr.TabbedInterface([text_demo, sum_demo], ["Label a Clinical Note", "Summarize Patient History"])
    demo.launch(share=False)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = load_tokenizer(args.model_name)
model = load_model(args, device)[0]
model.eval()
torch.set_grad_enabled(False)
run_gradio(model, tokenizer)