Spaces:
Running
Running
mohdelgaar
commited on
Commit
·
55d47b9
1
Parent(s):
59dd739
Add timeline tool
Browse files
app.py
CHANGED
@@ -2,63 +2,69 @@ import re
|
|
2 |
import argparse
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
|
|
|
|
5 |
from data import load_tokenizer
|
6 |
from model import load_model
|
7 |
from datetime import datetime
|
8 |
from dateutil import parser
|
9 |
from demo_assets import *
|
|
|
10 |
|
11 |
-
|
12 |
-
parser.
|
13 |
-
parser.add_argument('--
|
14 |
-
parser.add_argument('--
|
15 |
-
parser.add_argument('--
|
16 |
-
parser.add_argument('--
|
17 |
-
parser.add_argument('--
|
18 |
-
parser.add_argument('--
|
19 |
-
parser.add_argument('--
|
20 |
-
parser.add_argument('--
|
21 |
-
parser.add_argument('--
|
22 |
-
parser.add_argument('--
|
23 |
-
parser.add_argument('--
|
24 |
-
parser.add_argument('--
|
25 |
-
parser.add_argument('--
|
26 |
-
parser.add_argument('--
|
27 |
-
parser.add_argument('--
|
28 |
-
parser.add_argument('--
|
29 |
-
parser.add_argument('--
|
30 |
-
parser.add_argument('--
|
31 |
-
parser.add_argument('--
|
32 |
-
parser.add_argument('--
|
33 |
-
parser.add_argument('--
|
34 |
-
parser.add_argument('--
|
35 |
-
parser.add_argument('--
|
36 |
-
parser.add_argument('--
|
37 |
-
parser.add_argument('--
|
38 |
-
parser.add_argument('--
|
39 |
-
parser.add_argument('--
|
40 |
-
parser.add_argument('--
|
41 |
-
parser.add_argument('--
|
42 |
-
parser.add_argument('--
|
43 |
-
parser.add_argument('--
|
44 |
-
parser.add_argument('--
|
45 |
-
parser.add_argument('--
|
46 |
-
parser.add_argument('--
|
47 |
-
parser.add_argument('--
|
48 |
-
parser.add_argument('--
|
49 |
-
parser.add_argument('--
|
50 |
-
parser.add_argument('--
|
51 |
-
parser.add_argument('--
|
52 |
-
parser.add_argument('--
|
53 |
-
parser.add_argument('--
|
54 |
-
parser.add_argument('--
|
55 |
-
parser.add_argument('--
|
56 |
-
parser.add_argument('--
|
57 |
-
parser.add_argument('--
|
58 |
-
parser.add_argument('--
|
59 |
-
parser.add_argument('--
|
60 |
-
parser.add_argument('--
|
61 |
-
|
|
|
|
|
62 |
|
63 |
if args.task == 'seq' and args.pheno_id is not None:
|
64 |
args.num_labels = 1
|
@@ -150,170 +156,262 @@ def extract_date(text):
|
|
150 |
|
151 |
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
output = model.generate(x, mask)[0]
|
159 |
-
return output, encoding.token_to_chars
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
spans = indicators_to_spans(output.argmax(-1), t2c)
|
178 |
-
date = extract_date(text)
|
179 |
-
present_decs = set(cat for cat, _, _ in spans)
|
180 |
-
decs = {k: [] for k in sorted(present_decs)}
|
181 |
-
for c, s, e in spans:
|
182 |
-
decs[c].append(text[s:e])
|
183 |
-
dates[date] = decs
|
184 |
-
|
185 |
-
out = ""
|
186 |
-
for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
|
187 |
-
out += f'## **[{date}]**\n\n'
|
188 |
-
decs = dates[date]
|
189 |
-
for c in decs:
|
190 |
-
out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
|
191 |
-
for dec in decs[c]:
|
192 |
-
out += f'{dec}\n\n'
|
193 |
-
|
194 |
-
return out
|
195 |
|
|
|
196 |
global sum_c
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
with gr.Row():
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
text_btn = gr.Button('Run')
|
282 |
-
with gr.Column():
|
283 |
-
gr.Markdown("## Labeled Summary or Note"),
|
284 |
-
text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
|
285 |
-
gr.Examples(text_examples, inputs=text_input)
|
286 |
-
with gr.Tab("Summarize Patient History"):
|
287 |
with gr.Row():
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
sum_out = gr.Markdown(elem_id='sum-out')
|
302 |
-
gr.Markdown(desc)
|
303 |
-
|
304 |
-
# Functions
|
305 |
-
text_input.submit(process, inputs=text_input, outputs=text_out)
|
306 |
-
text_btn.click(process, inputs=text_input, outputs=text_out)
|
307 |
-
upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
|
308 |
-
ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
|
309 |
-
ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
|
310 |
-
sum_btn.click(process_sum, inputs=sum_inputs, outputs=sum_out)
|
311 |
-
# demo = gr.TabbedInterface([text_demo, sum_demo], ["Label a Clinical Note", "Summarize Patient History"])
|
312 |
-
demo.launch(share=False)
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import argparse
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
import plotly.express as px
|
7 |
+
import numpy as np
|
8 |
from data import load_tokenizer
|
9 |
from model import load_model
|
10 |
from datetime import datetime
|
11 |
from dateutil import parser
|
12 |
from demo_assets import *
|
13 |
+
from typing import List, Dict, Any
|
14 |
|
15 |
+
def get_args():
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
parser.add_argument('--data_dir', default='/data/mohamed/data')
|
18 |
+
parser.add_argument('--aim_repo', default='/data/mohamed/')
|
19 |
+
parser.add_argument('--ckpt', default='electra-base.pt')
|
20 |
+
parser.add_argument('--aim_exp', default='mimic-decisions-1215')
|
21 |
+
parser.add_argument('--label_encoding', default='multiclass')
|
22 |
+
parser.add_argument('--multiclass', action='store_true')
|
23 |
+
parser.add_argument('--debug', action='store_true')
|
24 |
+
parser.add_argument('--save_losses', action='store_true')
|
25 |
+
parser.add_argument('--task', default='token', choices=['seq', 'token'])
|
26 |
+
parser.add_argument('--max_len', type=int, default=512)
|
27 |
+
parser.add_argument('--num_layers', type=int, default=3)
|
28 |
+
parser.add_argument('--kernels', nargs=3, type=int, default=[1,2,3])
|
29 |
+
parser.add_argument('--model', default='roberta-base',)
|
30 |
+
parser.add_argument('--model_name', default='google/electra-base-discriminator',)
|
31 |
+
parser.add_argument('--gpu', default='0')
|
32 |
+
parser.add_argument('--grad_accumulation', default=2, type=int)
|
33 |
+
parser.add_argument('--pheno_id', type=int)
|
34 |
+
parser.add_argument('--unseen_pheno', type=int)
|
35 |
+
parser.add_argument('--text_subset')
|
36 |
+
parser.add_argument('--pheno_n', type=int, default=500)
|
37 |
+
parser.add_argument('--hidden_size', type=int, default=100)
|
38 |
+
parser.add_argument('--emb_size', type=int, default=400)
|
39 |
+
parser.add_argument('--total_steps', type=int, default=5000)
|
40 |
+
parser.add_argument('--train_log', type=int, default=500)
|
41 |
+
parser.add_argument('--val_log', type=int, default=1000)
|
42 |
+
parser.add_argument('--seed', default = '0')
|
43 |
+
parser.add_argument('--num_phenos', type=int, default=10)
|
44 |
+
parser.add_argument('--num_decs', type=int, default=9)
|
45 |
+
parser.add_argument('--num_umls_tags', type=int, default=33)
|
46 |
+
parser.add_argument('--batch_size', type=int, default=8)
|
47 |
+
parser.add_argument('--pos_weight', type=float, default=1.25)
|
48 |
+
parser.add_argument('--alpha_distil', type=float, default=1)
|
49 |
+
parser.add_argument('--distil', action='store_true')
|
50 |
+
parser.add_argument('--distil_att', action='store_true')
|
51 |
+
parser.add_argument('--distil_ckpt')
|
52 |
+
parser.add_argument('--use_umls', action='store_true')
|
53 |
+
parser.add_argument('--include_nolabel', action='store_true')
|
54 |
+
parser.add_argument('--truncate_train', action='store_true')
|
55 |
+
parser.add_argument('--truncate_eval', action='store_true')
|
56 |
+
parser.add_argument('--load_ckpt', action='store_true')
|
57 |
+
parser.add_argument('--gradio', action='store_true')
|
58 |
+
parser.add_argument('--optuna', action='store_true')
|
59 |
+
parser.add_argument('--mimic_data', action='store_true')
|
60 |
+
parser.add_argument('--eval_only', action='store_true')
|
61 |
+
parser.add_argument('--lr', type=float, default=4e-5)
|
62 |
+
parser.add_argument('--resample', default='')
|
63 |
+
parser.add_argument('--verbose', type=bool, default=True)
|
64 |
+
parser.add_argument('--use_crf', type=bool)
|
65 |
+
parser.add_argument('--print_spans', action='store_true')
|
66 |
+
return parser.parse_args()
|
67 |
+
args = get_args()
|
68 |
|
69 |
if args.task == 'seq' and args.pheno_id is not None:
|
70 |
args.num_labels = 1
|
|
|
156 |
|
157 |
|
158 |
|
159 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
160 |
+
tokenizer = load_tokenizer(args.model_name)
|
161 |
+
model = load_model(args, device)[0]
|
162 |
+
model.eval()
|
163 |
+
torch.set_grad_enabled(False)
|
|
|
|
|
164 |
|
165 |
+
def predict(text):
|
166 |
+
encoding = tokenizer.encode_plus(text)
|
167 |
+
x = torch.tensor(encoding['input_ids']).unsqueeze(0).to(device)
|
168 |
+
mask = torch.ones_like(x)
|
169 |
+
output = model.generate(x, mask)[0]
|
170 |
+
return output, encoding.token_to_chars
|
171 |
+
|
172 |
+
def process(text):
|
173 |
+
if text is not None:
|
174 |
+
output, t2c = predict(text)
|
175 |
+
tags = postprocess_labels(text, output, t2c)
|
176 |
+
with open('log.csv', 'a') as f:
|
177 |
+
f.write(f'{datetime.now()},{text}\n')
|
178 |
+
return list(zip(text, tags))
|
179 |
+
else:
|
180 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
def process_sum(*inputs):
|
183 |
global sum_c
|
184 |
+
dates = {}
|
185 |
+
for i in range(sum_c):
|
186 |
+
text = inputs[i]
|
187 |
+
output, t2c = predict(text)
|
188 |
+
spans = indicators_to_spans(output.argmax(-1), t2c)
|
189 |
+
date = extract_date(text)
|
190 |
+
present_decs = set(cat for cat, _, _ in spans)
|
191 |
+
decs = {k: [] for k in sorted(present_decs)}
|
192 |
+
for c, s, e in spans:
|
193 |
+
decs[c].append(text[s:e])
|
194 |
+
dates[date] = decs
|
195 |
+
|
196 |
+
out = ""
|
197 |
+
for date in sorted(dates.keys(), key = lambda x: parser.parse(x)):
|
198 |
+
out += f'## **[{date}]**\n\n'
|
199 |
+
decs = dates[date]
|
200 |
+
for c in decs:
|
201 |
+
out += f'### {unicode_symbols[c]} ***{categories[c]}***\n\n'
|
202 |
+
for dec in decs[c]:
|
203 |
+
out += f'{dec}\n\n'
|
204 |
+
|
205 |
+
return out
|
206 |
+
|
207 |
+
|
208 |
+
def get_structured_data(*inputs):
|
209 |
+
global sum_c
|
210 |
+
data = []
|
211 |
+
for i in range(sum_c):
|
212 |
+
text = inputs[i]
|
213 |
+
output, t2c = predict(text)
|
214 |
+
spans = indicators_to_spans(output.argmax(-1), t2c)
|
215 |
+
date = extract_date(text)
|
216 |
+
for c, s, e in spans:
|
217 |
+
data.append({
|
218 |
+
'date': date,
|
219 |
+
'timestamp': parser.parse(date),
|
220 |
+
'decision_type': categories[c], 'details': text[s:e]})
|
221 |
+
return data
|
222 |
+
|
223 |
+
def update_inputs(inputs):
|
224 |
+
outputs = []
|
225 |
+
if inputs is None:
|
226 |
+
c = 0
|
227 |
+
else:
|
228 |
+
inputs = [open(f.name).read() for f in inputs]
|
229 |
+
for i, text in enumerate(inputs):
|
230 |
+
outputs.append(gr.update(value=text, visible=True))
|
231 |
+
c = len(inputs)
|
232 |
+
|
233 |
+
n = SUM_INPUTS
|
234 |
+
for i in range(n - c):
|
235 |
+
outputs.append(gr.update(value='', visible=False))
|
236 |
+
global sum_c; sum_c = c
|
237 |
+
global structured_data
|
238 |
+
structured_data = get_structured_data(*inputs) if inputs is not None else []
|
239 |
+
return outputs
|
240 |
+
|
241 |
+
def add_ex(*inputs):
|
242 |
+
global sum_c
|
243 |
+
new_idx = sum_c
|
244 |
+
if new_idx < SUM_INPUTS:
|
245 |
+
out = inputs[:new_idx] + (gr.update(visible=True),) + inputs[new_idx+1:]
|
246 |
+
sum_c += 1
|
247 |
+
else:
|
248 |
+
out = inputs
|
249 |
+
return out
|
250 |
+
|
251 |
+
def sub_ex(*inputs):
|
252 |
+
global sum_c
|
253 |
+
new_idx = sum_c - 1
|
254 |
+
if new_idx > 0:
|
255 |
+
out = inputs[:new_idx] + (gr.update(visible=False),) + inputs[new_idx+1:]
|
256 |
+
sum_c -= 1
|
257 |
+
else:
|
258 |
+
out = inputs
|
259 |
+
return out
|
260 |
+
|
261 |
+
|
262 |
+
def create_timeline_plot(data: List[Dict[str, Any]]):
|
263 |
+
df = pd.DataFrame(data)
|
264 |
+
# df['int_cat'] = pd.factorize(df['decision_type'])[0]
|
265 |
+
# df['int_cat_jittered'] = df['int_cat'] + np.random.uniform(-0.1, 0.1, size=len(df))
|
266 |
+
# fig = px.scatter(df, x='date', y='int_cat_jittered', color='decision_type', hover_data=['details'],
|
267 |
+
# title='Patient Timeline')
|
268 |
+
# fig.update_layout(
|
269 |
+
# yaxis=dict(
|
270 |
+
# tickmode='array',
|
271 |
+
# tickvals=df['int_cat'].unique(),
|
272 |
+
# ticktext=df['decision_type'].unique()),
|
273 |
+
# xaxis_title='Date',
|
274 |
+
# yaxis_title='Category')
|
275 |
+
fig = px.strip(df, x='date', y='decision_type', color='decision_type', hover_data=['details'],
|
276 |
+
stripmode = "overlay",
|
277 |
+
title='Patient Timeline')
|
278 |
+
fig.update_traces(jitter=1.0, marker=dict(size=10, opacity=0.6))
|
279 |
+
fig.update_layout(height=600)
|
280 |
+
return fig
|
281 |
+
|
282 |
+
def filter_timeline(decision_type: str, start_date: str, end_date: str) -> px.scatter:
|
283 |
+
global structured_data
|
284 |
+
filtered_data = structured_data
|
285 |
+
if 'All' not in decision_types:
|
286 |
+
filtered_data = [event for event in filtered_data if event['decision_type'] in decision_types]
|
287 |
+
|
288 |
+
start = parser.parse(start_date)
|
289 |
+
end = parser.parse(end_date)
|
290 |
+
filtered_data = [event for event in filtered_data if start <= event['timestamp'] <= end]
|
291 |
+
|
292 |
+
return create_timeline_plot(filtered_data)
|
293 |
+
|
294 |
+
def generate_summary(*inputs) -> str:
|
295 |
+
global structured_data
|
296 |
+
structured_data = get_structured_data(*inputs)
|
297 |
+
decision_types = {}
|
298 |
+
for event in structured_data:
|
299 |
+
decision_type = event['decision_type']
|
300 |
+
decision_types[decision_type] = decision_types.get(decision_type, 0) + 1
|
301 |
+
|
302 |
+
summary = "Decision Type Summary:\n"
|
303 |
+
for decision_type, count in decision_types.items():
|
304 |
+
summary += f"{decision_type}: {count}\n"
|
305 |
+
return summary, create_timeline_plot(structured_data)
|
306 |
+
|
307 |
+
global sum_c
|
308 |
+
sum_c = 1
|
309 |
+
SUM_INPUTS = 20
|
310 |
+
structured_data = []
|
311 |
+
|
312 |
+
device = model.backbone.device
|
313 |
+
# colors = ['aqua', 'blue', 'fuchsia', 'teal', 'green', 'olive', 'lime', 'silver', 'purple', 'red',
|
314 |
+
# 'yellow', 'navy', 'gray', 'white', 'maroon', 'black']
|
315 |
+
colors = ['#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#d9d9d9', '#bc80bd']
|
316 |
+
|
317 |
+
color_map = {cat: colors[i] for i,cat in enumerate(categories)}
|
318 |
+
|
319 |
+
det_desc = ['Admit, discharge, follow-up, referral',
|
320 |
+
'Ordering test, consulting colleague, seeking external information',
|
321 |
+
'Diagnostic conclusion, evaluation of health state, etiological inference, prognostic judgment',
|
322 |
+
'Quantitative or qualitative',
|
323 |
+
'Start, stop, alter, maintain, refrain',
|
324 |
+
'Start, stop, alter, maintain, refrain',
|
325 |
+
'Positive, negative, ambiguous test results',
|
326 |
+
'Transfer responsibility, wait and see, change subject',
|
327 |
+
'Advice or precaution',
|
328 |
+
'Sick leave, drug refund, insurance, disability']
|
329 |
+
|
330 |
+
desc = '### Zones (categories)\n'
|
331 |
+
desc += '| | |\n| --- | --- |\n'
|
332 |
+
for i,cat in enumerate(categories):
|
333 |
+
desc += f'| {unicode_symbols[i]} **{cat}** | {det_desc[i]}|\n'
|
334 |
+
|
335 |
+
#colors
|
336 |
+
#markdown labels
|
337 |
+
#legend and desc
|
338 |
+
#css font-size
|
339 |
+
css = '.category-legend {border:1px dashed black;}'\
|
340 |
+
'.text-sm {font-size: 1.5rem; line-height: 200%;}'\
|
341 |
+
'.gr-sample-textbox {width: 1000px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}'\
|
342 |
+
'.text-limit label textarea {height: 150px !important; overflow: scroll; }'\
|
343 |
+
'.text-gray-500 {color: #111827; font-weight: 600; font-size: 1.25em; margin-top: 1.6em; margin-bottom: 0.6em;'\
|
344 |
+
'line-height: 1.6;}'\
|
345 |
+
'#sum-out {border: 2px solid #007bff; padding: 20px; border-radius: 10px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);'
|
346 |
+
title='Clinical Decision Zoning'
|
347 |
+
with gr.Blocks(title=title, css=css) as demo:
|
348 |
+
gr.Markdown(f'# {title}')
|
349 |
+
with gr.Tab("Label a Clinical Note"):
|
350 |
+
with gr.Row():
|
351 |
+
with gr.Column():
|
352 |
+
gr.Markdown("## Enter a Discharge Summary or Clinical Note"),
|
353 |
+
text_input = gr.Textbox(
|
354 |
+
# value=examples[0],
|
355 |
+
label="",
|
356 |
+
placeholder="Enter text here...")
|
357 |
+
text_btn = gr.Button('Run')
|
358 |
+
with gr.Column():
|
359 |
+
gr.Markdown("## Labeled Summary or Note"),
|
360 |
+
text_out = gr.Highlight(label="", combine_adjacent=True, show_legend=False, color_map=color_map)
|
361 |
+
gr.Examples(text_examples, inputs=text_input)
|
362 |
+
with gr.Tab("Summarize Patient History"):
|
363 |
+
with gr.Row():
|
364 |
+
with gr.Column():
|
365 |
+
sum_inputs = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
|
366 |
+
sum_inputs.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
|
367 |
+
for i in range(2, SUM_INPUTS + 1)])
|
368 |
+
sum_btn = gr.Button('Run')
|
369 |
+
with gr.Row():
|
370 |
+
ex_add = gr.Button("+")
|
371 |
+
ex_sub = gr.Button("-")
|
372 |
+
upload = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
|
373 |
+
gr.Examples(sum_examples, inputs=upload,
|
374 |
+
fn = update_inputs, outputs=sum_inputs, run_on_click=True)
|
375 |
+
with gr.Column():
|
376 |
+
gr.Markdown("## Summarized Clinical Decision History")
|
377 |
+
sum_out = gr.Markdown(elem_id='sum-out')
|
378 |
+
with gr.Tab("Timeline Visualization Tool"):
|
379 |
+
with gr.Column():
|
380 |
+
sum_inputs2 = [gr.Text(label='Clinical Note 1', elem_classes='text-limit')]
|
381 |
+
sum_inputs2.extend([gr.Text(label='Clinical Note %d'%i, visible=False, elem_classes='text-limit')
|
382 |
+
for i in range(2, SUM_INPUTS + 1)])
|
383 |
with gr.Row():
|
384 |
+
ex_add2 = gr.Button("+")
|
385 |
+
ex_sub2 = gr.Button("-")
|
386 |
+
upload2 = gr.File(label='Upload clinical notes', file_types=['text'], file_count='multiple')
|
387 |
+
gr.Examples(sum_examples, inputs=upload2,
|
388 |
+
fn = update_inputs, outputs=sum_inputs2, run_on_click=True)
|
389 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
with gr.Row():
|
391 |
+
decision_type = gr.Dropdown(["All"] + categories,
|
392 |
+
multiselect=True,
|
393 |
+
label="Decision Type", value="All")
|
394 |
+
start_date = gr.Textbox(label="Start Date (MM/DD/YYYY)", value="01/01/2006")
|
395 |
+
end_date = gr.Textbox(label="End Date (MM/DD/YYYY)", value="12/31/2024")
|
396 |
+
|
397 |
+
filter_button = gr.Button("Filter Timeline")
|
398 |
+
|
399 |
+
timeline_plot = gr.Plot()
|
400 |
+
|
401 |
+
summary_button = gr.Button("Generate Summary")
|
402 |
+
summary_output = gr.Textbox(label="Summary")
|
403 |
+
gr.Markdown(desc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
+
# Functions
|
406 |
+
text_input.submit(process, inputs=text_input, outputs=text_out)
|
407 |
+
text_btn.click(process, inputs=text_input, outputs=text_out)
|
408 |
+
upload.change(update_inputs, inputs=upload, outputs=sum_inputs)
|
409 |
+
upload2.change(update_inputs, inputs=upload2, outputs=sum_inputs2)
|
410 |
+
ex_add.click(add_ex, inputs=sum_inputs, outputs=sum_inputs)
|
411 |
+
ex_sub.click(sub_ex, inputs=sum_inputs, outputs=sum_inputs)
|
412 |
+
ex_add2.click(add_ex, inputs=sum_inputs2, outputs=sum_inputs2)
|
413 |
+
ex_sub2.click(sub_ex, inputs=sum_inputs2, outputs=sum_inputs2)
|
414 |
+
sum_btn.click(process_sum, inputs=sum_inputs, outputs=sum_out)
|
415 |
+
filter_button.click(filter_timeline, inputs=[decision_type, start_date, end_date], outputs=timeline_plot)
|
416 |
+
summary_button.click(generate_summary, inputs=sum_inputs2, outputs=[summary_output, timeline_plot])
|
417 |
+
demo.launch(share=True)
|