|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "bragour/Camel-7b-chat-awq" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
def generate_response(user_input, chat_history=[]): |
|
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') |
|
bot_input_ids = torch.cat([torch.LongTensor(chat_history), new_user_input_ids], dim=-1) if chat_history else new_user_input_ids |
|
|
|
chat_history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) |
|
|
|
response = tokenizer.decode(chat_history[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
return response, chat_history.tolist() |
|
|
|
|
|
def chat(user_input, history=[]): |
|
response, history = generate_response(user_input, history) |
|
return response, history |
|
|
|
iface = gr.Interface( |
|
fn=chat, |
|
inputs=[gr.inputs.Textbox(lines=7, label="Input Text"), gr.inputs.State()], |
|
outputs=[gr.outputs.Textbox(label="Response"), gr.outputs.State()], |
|
title="ChatBot", |
|
description="A simple chatbot using a pre-trained Camel-7b-chat model." |
|
) |
|
|
|
iface.launch() |
|
|