File size: 3,807 Bytes
1879130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9654824
 
 
f360131
9654824
f360131
9654824
 
1879130
9654824
1879130
f360131
 
 
 
 
 
1879130
f360131
1879130
 
 
 
 
 
 
 
f360131
1879130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, ValidationError
from fastapi.encoders import jsonable_encoder

# TEXT PREPROCESSING
# --------------------------------------------------------------------
import re
import string
import nltk
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.stem import WordNetLemmatizer

# Function to remove URLs from text
def remove_urls(text):
    return re.sub(r'http[s]?://\S+', '', text)

# Function to remove punctuations from text
def remove_punctuation(text):
    regular_punct = string.punctuation
    return str(re.sub(r'['+regular_punct+']', '', str(text)))

# Function to convert the text into lower case
def lower_case(text):
    return text.lower()

# Function to lemmatize text
def lemmatize(text):
    wordnet_lemmatizer = WordNetLemmatizer()

    tokens = nltk.word_tokenize(text)
    lemma_txt = ''
    for w in tokens:
        lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' '

    return lemma_txt

def preprocess_text(text):
    # Preprocess the input text
    text = remove_urls(text)
    text = remove_punctuation(text)
    text = lower_case(text)
    text = lemmatize(text)
    return text

# Load the model using FastAPI lifespan event so that the model is loaded at the beginning for efficiency
@asynccontextmanager
async def lifespan(app: FastAPI):
    # Load the model from HuggingFace transformers library
     from transformers import pipeline
     global sentiment_task 
     sentiment_task = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", tokenizer= "lxyuan/distilbert-base-multilingual-cased-sentiments-student")
    # Use a pipeline as a high-level helper
 #   from transformers import pipeline
    
 #   pipe = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions", tokenizer="SamLowe/roberta-base-go_emotions")
     yield
    # Clean up the model and release the resources
     del sentiment_task

description = """
## Text Classification API 
Upon input to this app, It will show the sentiment of the text (positive, negative, or neutral).
Check out the docs for the `/analyze/{text}` endpoint below to try it out!
"""
    
# Initialize the FastAPI app
app = FastAPI(lifespan=lifespan, docs_url="/", description=description)

# Define the input data model
class TextInput(BaseModel):
    text: str

# Define the welcome endpoint
@app.get('/')
async def welcome():
    return "Welcome to our First Emotion  Classification API"

# Validate input text length
MAX_TEXT_LENGTH = 1000

# Define the sentiment analysis endpoint 
@app.post('/analyze/{text}')
async def classify_text(text_input:TextInput):    
    try:
        # Convert input data to JSON serializable dictionary
        text_input_dict = jsonable_encoder(text_input)
        # Validate input data using Pydantic model
        text_data = TextInput(**text_input_dict)  # Convert to Pydantic model

        # Validate input text length
        if len(text_input.text) > MAX_TEXT_LENGTH:
            raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length")
        elif len(text_input.text) == 0:
            raise HTTPException(status_code=400, detail="Text cannot be empty")
    except ValidationError as e:
        # Handle validation error
        raise HTTPException(status_code=422, detail=str(e))

    try:
        # Perform text classification
        return sentiment_task(preprocess_text(text_input.text))
    except ValueError as ve:
        # Handle value error
        raise HTTPException(status_code=400, detail=str(ve))
    except Exception as e:
        # Handle other server errors
        raise HTTPException(status_code=500, detail=str(e))