mohsinabbas1984 commited on
Commit
02703ea
1 Parent(s): 156db8c

from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, ValidationError
from fastapi.encoders import jsonable_encoder

# TEXT PREPROCESSING
# --------------------------------------------------------------------
import re
import string
import nltk
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.stem import WordNetLemmatizer

# Function to remove URLs from text
def remove_urls(text):
return re.sub(r'http[s]?://\S+', '', text)

# Function to remove punctuations from text
def remove_punctuation(text):
regular_punct = string.punctuation
return str(re.sub(r'['+regular_punct+']', '', str(text)))

# Function to convert the text into lower case
def lower_case(text):
return text.lower()

# Function to lemmatize text
def lemmatize(text):
wordnet_lemmatizer = WordNetLemmatizer()

tokens = nltk.word_tokenize(text)
lemma_txt = ''
for w in tokens:
lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' '

return lemma_txt

def preprocess_text(text):
# Preprocess the input text
text = remove_urls(text)
text = remove_punctuation(text)
text = lower_case(text)
text = lemmatize(text)
return text

# Load the model using FastAPI lifespan event so that the model is loaded at the beginning for efficiency
@asynccontextmanager
async def lifespan(app: FastAPI):
# Load the model from HuggingFace transformers library
from transformers import pipeline
global sentiment_task
sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
yield
# Clean up the model and release the resources
del sentiment_task

# Initialize the FastAPI app
app = FastAPI(lifespan=lifespan)

# Define the input data model
class TextInput(BaseModel):
text: str

# Define the welcome endpoint


@app
.get('/')
async def welcome():
return "Welcome to our Text Classification API"

# Validate input text length
MAX_TEXT_LENGTH = 1000

# Define the sentiment analysis endpoint


@app
.post('/analyze/{text}')
async def classify_text(text_input:TextInput):
try:
# Convert input data to JSON serializable dictionary
text_input_dict = jsonable_encoder(text_input)
# Validate input data using Pydantic model
text_data = TextInput(**text_input_dict) # Convert to Pydantic model

# Validate input text length
if len(text_input.text) > MAX_TEXT_LENGTH:
raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length")
elif len(text_input.text) == 0:
raise HTTPException(status_code=400, detail="Text cannot be empty")
except ValidationError as e:
# Handle validation error
raise HTTPException(status_code=422, detail=str(e))

try:
# Perform text classification
return sentiment_task(preprocess_text(text_input.text))
except ValueError as ve:
# Handle value error
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle other server errors
raise HTTPException(status_code=500, detail=str(e))

Files changed (1) hide show
  1. Dockerfile +63 -0
Dockerfile ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # syntax=docker/dockerfile:1
2
+
3
+ # Comments are provided throughout this file to help you get started.
4
+ # If you need more help, visit the Dockerfile reference guide at
5
+ # https://docs.docker.com/go/dockerfile-reference/
6
+
7
+ # Want to help us make this template better? Share your feedback here: https://forms.gle/ybq9Krt8jtBL3iCk7
8
+
9
+ ARG PYTHON_VERSION=3.11.9
10
+ FROM python:${PYTHON_VERSION}-slim as base
11
+
12
+ # Prevents Python from writing pyc files.
13
+ ENV PYTHONDONTWRITEBYTECODE=1
14
+
15
+ # Keeps Python from buffering stdout and stderr to avoid situations where
16
+ # the application crashes without emitting any logs due to buffering.
17
+ ENV PYTHONUNBUFFERED=1
18
+
19
+ WORKDIR /app
20
+
21
+ # Create a non-privileged user that the app will run under.
22
+ # See https://docs.docker.com/go/dockerfile-user-best-practices/
23
+ ARG UID=10001
24
+ RUN adduser \
25
+ --disabled-password \
26
+ --gecos "" \
27
+ --home "/nonexistent" \
28
+ --shell "/sbin/nologin" \
29
+ --no-create-home \
30
+ --uid "${UID}" \
31
+ appuser
32
+
33
+ # Download dependencies as a separate step to take advantage of Docker's caching.
34
+ # Leverage a cache mount to /root/.cache/pip to speed up subsequent builds.
35
+ # Leverage a bind mount to requirements.txt to avoid having to copy them into
36
+ # into this layer.
37
+ RUN --mount=type=cache,target=/root/.cache/pip \
38
+ --mount=type=bind,source=requirements.txt,target=requirements.txt \
39
+ python -m pip install -r requirements.txt
40
+
41
+ # Switch to the non-privileged user to run the application.
42
+ USER appuser
43
+
44
+ # Set the TRANSFORMERS_CACHE environment variable
45
+ ENV TRANSFORMERS_CACHE=/tmp/.cache/huggingface
46
+
47
+ # Create the cache folder with appropriate permissions
48
+ RUN mkdir -p $TRANSFORMERS_CACHE && chmod -R 777 $TRANSFORMERS_CACHE
49
+
50
+ # Set NLTK data directory
51
+ ENV NLTK_DATA=/tmp/nltk_data
52
+
53
+ # Create the NLTK data directory with appropriate permissions
54
+ RUN mkdir -p $NLTK_DATA && chmod -R 777 $NLTK_DATA
55
+
56
+ # Copy the source code into the container.
57
+ COPY . .
58
+
59
+ # Expose the port that the application listens on.
60
+ EXPOSE 8000
61
+
62
+ # Run the application.
63
+ CMD uvicorn 'main:app' --host=0.0.0.0 --port=7860