main.py
Browse filesfrom contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, ValidationError
from fastapi.encoders import jsonable_encoder
# TEXT PREPROCESSING
# --------------------------------------------------------------------
import re
import string
import nltk
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.stem import WordNetLemmatizer
# Function to remove URLs from text
def remove_urls(text):
return re.sub(r'http[s]?://\S+', '', text)
# Function to remove punctuations from text
def remove_punctuation(text):
regular_punct = string.punctuation
return str(re.sub(r'['+regular_punct+']', '', str(text)))
# Function to convert the text into lower case
def lower_case(text):
return text.lower()
# Function to lemmatize text
def lemmatize(text):
wordnet_lemmatizer = WordNetLemmatizer()
tokens = nltk.word_tokenize(text)
lemma_txt = ''
for w in tokens:
lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' '
return lemma_txt
def preprocess_text(text):
# Preprocess the input text
text = remove_urls(text)
text = remove_punctuation(text)
text = lower_case(text)
text = lemmatize(text)
return text
# Load the model using FastAPI lifespan event so that the model is loaded at the beginning for efficiency
@asynccontextmanager
async def lifespan(app: FastAPI):
# Load the model from HuggingFace transformers library
from transformers import pipeline
global sentiment_task
sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
yield
# Clean up the model and release the resources
del sentiment_task
# Initialize the FastAPI app
app = FastAPI(lifespan=lifespan)
# Define the input data model
class TextInput(BaseModel):
text: str
# Define the welcome endpoint
@app
.get('/')
async def welcome():
return "Welcome to our Text Classification API"
# Validate input text length
MAX_TEXT_LENGTH = 1000
# Define the sentiment analysis endpoint
@app
.post('/analyze/{text}')
async def classify_text(text_input:TextInput):
try:
# Convert input data to JSON serializable dictionary
text_input_dict = jsonable_encoder(text_input)
# Validate input data using Pydantic model
text_data = TextInput(**text_input_dict) # Convert to Pydantic model
# Validate input text length
if len(text_input.text) > MAX_TEXT_LENGTH:
raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length")
elif len(text_input.text) == 0:
raise HTTPException(status_code=400, detail="Text cannot be empty")
except ValidationError as e:
# Handle validation error
raise HTTPException(status_code=422, detail=str(e))
try:
# Perform text classification
return sentiment_task(preprocess_text(text_input.text))
except ValueError as ve:
# Handle value error
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle other server errors
raise HTTPException(status_code=500, detail=str(e))
- Dockerfile +63 -0
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# syntax=docker/dockerfile:1
|
2 |
+
|
3 |
+
# Comments are provided throughout this file to help you get started.
|
4 |
+
# If you need more help, visit the Dockerfile reference guide at
|
5 |
+
# https://docs.docker.com/go/dockerfile-reference/
|
6 |
+
|
7 |
+
# Want to help us make this template better? Share your feedback here: https://forms.gle/ybq9Krt8jtBL3iCk7
|
8 |
+
|
9 |
+
ARG PYTHON_VERSION=3.11.9
|
10 |
+
FROM python:${PYTHON_VERSION}-slim as base
|
11 |
+
|
12 |
+
# Prevents Python from writing pyc files.
|
13 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
14 |
+
|
15 |
+
# Keeps Python from buffering stdout and stderr to avoid situations where
|
16 |
+
# the application crashes without emitting any logs due to buffering.
|
17 |
+
ENV PYTHONUNBUFFERED=1
|
18 |
+
|
19 |
+
WORKDIR /app
|
20 |
+
|
21 |
+
# Create a non-privileged user that the app will run under.
|
22 |
+
# See https://docs.docker.com/go/dockerfile-user-best-practices/
|
23 |
+
ARG UID=10001
|
24 |
+
RUN adduser \
|
25 |
+
--disabled-password \
|
26 |
+
--gecos "" \
|
27 |
+
--home "/nonexistent" \
|
28 |
+
--shell "/sbin/nologin" \
|
29 |
+
--no-create-home \
|
30 |
+
--uid "${UID}" \
|
31 |
+
appuser
|
32 |
+
|
33 |
+
# Download dependencies as a separate step to take advantage of Docker's caching.
|
34 |
+
# Leverage a cache mount to /root/.cache/pip to speed up subsequent builds.
|
35 |
+
# Leverage a bind mount to requirements.txt to avoid having to copy them into
|
36 |
+
# into this layer.
|
37 |
+
RUN --mount=type=cache,target=/root/.cache/pip \
|
38 |
+
--mount=type=bind,source=requirements.txt,target=requirements.txt \
|
39 |
+
python -m pip install -r requirements.txt
|
40 |
+
|
41 |
+
# Switch to the non-privileged user to run the application.
|
42 |
+
USER appuser
|
43 |
+
|
44 |
+
# Set the TRANSFORMERS_CACHE environment variable
|
45 |
+
ENV TRANSFORMERS_CACHE=/tmp/.cache/huggingface
|
46 |
+
|
47 |
+
# Create the cache folder with appropriate permissions
|
48 |
+
RUN mkdir -p $TRANSFORMERS_CACHE && chmod -R 777 $TRANSFORMERS_CACHE
|
49 |
+
|
50 |
+
# Set NLTK data directory
|
51 |
+
ENV NLTK_DATA=/tmp/nltk_data
|
52 |
+
|
53 |
+
# Create the NLTK data directory with appropriate permissions
|
54 |
+
RUN mkdir -p $NLTK_DATA && chmod -R 777 $NLTK_DATA
|
55 |
+
|
56 |
+
# Copy the source code into the container.
|
57 |
+
COPY . .
|
58 |
+
|
59 |
+
# Expose the port that the application listens on.
|
60 |
+
EXPOSE 8000
|
61 |
+
|
62 |
+
# Run the application.
|
63 |
+
CMD uvicorn 'main:app' --host=0.0.0.0 --port=7860
|