from contextlib import asynccontextmanager from fastapi import FastAPI, HTTPException from pydantic import BaseModel, ValidationError from fastapi.encoders import jsonable_encoder # TEXT PREPROCESSING # -------------------------------------------------------------------- import re import string import nltk nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') from nltk.stem import WordNetLemmatizer # Function to remove URLs from text def remove_urls(text): return re.sub(r'http[s]?://\S+', '', text) # Function to remove punctuations from text def remove_punctuation(text): regular_punct = string.punctuation return str(re.sub(r'['+regular_punct+']', '', str(text))) # Function to convert the text into lower case def lower_case(text): return text.lower() # Function to lemmatize text def lemmatize(text): wordnet_lemmatizer = WordNetLemmatizer() tokens = nltk.word_tokenize(text) lemma_txt = '' for w in tokens: lemma_txt = lemma_txt + wordnet_lemmatizer.lemmatize(w) + ' ' return lemma_txt def preprocess_text(text): # Preprocess the input text text = remove_urls(text) text = remove_punctuation(text) text = lower_case(text) text = lemmatize(text) return text # Load the model using FastAPI lifespan event so that the model is loaded at the beginning for efficiency @asynccontextmanager async def lifespan(app: FastAPI): # Load the model from HuggingFace transformers library from transformers import pipeline global sentiment_task sentiment_task = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", tokenizer= "lxyuan/distilbert-base-multilingual-cased-sentiments-student") # Use a pipeline as a high-level helper # from transformers import pipeline # pipe = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions", tokenizer="SamLowe/roberta-base-go_emotions") yield # Clean up the model and release the resources del sentiment_task description = """ ## Text Classification API Upon input to this app, It will show the sentiment of the text (positive, negative, or neutral). Check out the docs for the `/analyze/{text}` endpoint below to try it out! """ # Initialize the FastAPI app app = FastAPI(lifespan=lifespan, docs_url="/", description=description) # Define the input data model class TextInput(BaseModel): text: str # Define the welcome endpoint @app.get('/') async def welcome(): return "Welcome to our First Emotion Classification API" # Validate input text length MAX_TEXT_LENGTH = 1000 # Define the sentiment analysis endpoint @app.post('/analyze/{text}') async def classify_text(text_input:TextInput): try: # Convert input data to JSON serializable dictionary text_input_dict = jsonable_encoder(text_input) # Validate input data using Pydantic model text_data = TextInput(**text_input_dict) # Convert to Pydantic model # Validate input text length if len(text_input.text) > MAX_TEXT_LENGTH: raise HTTPException(status_code=400, detail="Text length exceeds maximum allowed length") elif len(text_input.text) == 0: raise HTTPException(status_code=400, detail="Text cannot be empty") except ValidationError as e: # Handle validation error raise HTTPException(status_code=422, detail=str(e)) try: # Perform text classification return sentiment_task(preprocess_text(text_input.text)) except ValueError as ve: # Handle value error raise HTTPException(status_code=400, detail=str(ve)) except Exception as e: # Handle other server errors raise HTTPException(status_code=500, detail=str(e))