molinari135 commited on
Commit
0f16b6f
1 Parent(s): 68f7af7

Update product_return_prediction/api.py

Browse files
Files changed (1) hide show
  1. product_return_prediction/api.py +8 -8
product_return_prediction/api.py CHANGED
@@ -127,8 +127,8 @@ async def root():
127
  @app.post("/predict/")
128
  async def predict(products: ProductRequest):
129
  inventory_path: Path = EXTERNAL_DATA_DIR / "inventory.tsv"
130
- model_name: str = "svm.pkl"
131
- scaler_name: str = "scaler.pkl"
132
 
133
  hf_token = os.getenv("inventory_data")
134
  dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
@@ -145,14 +145,14 @@ async def predict(products: ProductRequest):
145
  filtered_inventory, products.total_customer_purchases, products.total_customer_returns
146
  )
147
 
148
- models_uri = "https://huggingface.co/molinari135/se4ai-models/resolve/main/"
149
- model_path = MODELS_DIR / model_name
150
- scaler_path = MODELS_DIR / scaler_name
151
 
152
- headers = f"Authorization: Bearer {hf_token}"
153
 
154
- download_file(f"{models_uri}{model_name}", model_path, headers)
155
- download_file(f"{models_uri}{scaler_name}", scaler_path, headers)
156
 
157
  model = load_model(model_path)
158
 
 
127
  @app.post("/predict/")
128
  async def predict(products: ProductRequest):
129
  inventory_path: Path = EXTERNAL_DATA_DIR / "inventory.tsv"
130
+ model_path: Path = MODELS_DIR / "svm.pkl"
131
+ scaler_file: Path = MODELS_DIR / "scaler.pkl"
132
 
133
  hf_token = os.getenv("inventory_data")
134
  dataset = load_dataset("molinari135/armani-inventory", token=hf_token, data_files="inventory.tsv")
 
145
  filtered_inventory, products.total_customer_purchases, products.total_customer_returns
146
  )
147
 
148
+ # models_uri = "https://huggingface.co/molinari135/se4ai-models/resolve/main/"
149
+ # model_path = MODELS_DIR / model_name
150
+ # scaler_path = MODELS_DIR / scaler_name
151
 
152
+ # headers = f"Authorization: Bearer {hf_token}"
153
 
154
+ # download_file(f"{models_uri}{model_name}", model_path, headers)
155
+ # download_file(f"{models_uri}{scaler_name}", scaler_path, headers)
156
 
157
  model = load_model(model_path)
158