molinari135
commited on
Commit
·
b43d7f1
1
Parent(s):
9d103e2
Added Gradio
Browse files- README.md +1 -0
- app.py +79 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -4,6 +4,7 @@ emoji: 🏃
|
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: docker
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
|
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: docker
|
7 |
+
app_file: app.py
|
8 |
pinned: false
|
9 |
---
|
10 |
|
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
|
4 |
+
# FastAPI endpoint URL
|
5 |
+
API_URL = "http://localhost:7860/predict/"
|
6 |
+
|
7 |
+
|
8 |
+
# Gradio Interface function
|
9 |
+
def predict_return(selected_products, total_customer_purchases, total_customer_returns):
|
10 |
+
# Input validation for returns (must be <= purchases)
|
11 |
+
if total_customer_returns > total_customer_purchases:
|
12 |
+
return "Error: Total returns cannot be greater than total purchases."
|
13 |
+
|
14 |
+
# Prepare the request data
|
15 |
+
models = []
|
16 |
+
fabrics = []
|
17 |
+
colours = []
|
18 |
+
|
19 |
+
for selected_product in selected_products:
|
20 |
+
# Split each selected product into model, fabric, and color
|
21 |
+
model, fabric, color = selected_product.split("-")
|
22 |
+
models.append(model)
|
23 |
+
fabrics.append(fabric)
|
24 |
+
colours.append(color)
|
25 |
+
|
26 |
+
# Prepare the data to send to the API
|
27 |
+
data = {
|
28 |
+
"models": models,
|
29 |
+
"fabrics": fabrics,
|
30 |
+
"colours": colours,
|
31 |
+
"total_customer_purchases": total_customer_purchases,
|
32 |
+
"total_customer_returns": total_customer_returns
|
33 |
+
}
|
34 |
+
|
35 |
+
print(data)
|
36 |
+
|
37 |
+
try:
|
38 |
+
# Make the POST request to the FastAPI endpoint
|
39 |
+
response = requests.post(API_URL, json=data)
|
40 |
+
response.raise_for_status() # Raise an error for bad responses
|
41 |
+
|
42 |
+
# Get the predictions and return them
|
43 |
+
result = response.json()
|
44 |
+
predictions = result.get('predictions', [])
|
45 |
+
|
46 |
+
if not predictions:
|
47 |
+
return "Error: No predictions found."
|
48 |
+
|
49 |
+
# Format the output to display nicely
|
50 |
+
formatted_result = "\n".join([f"Product: {pred['product']} | Prediction: {pred['prediction']} | Confidence: {pred['confidence']}%" for pred in predictions])
|
51 |
+
return formatted_result
|
52 |
+
|
53 |
+
except requests.exceptions.RequestException as e:
|
54 |
+
return f"Error: {str(e)}"
|
55 |
+
|
56 |
+
|
57 |
+
# Predefined list of model-fabric-color combinations
|
58 |
+
combinations = [
|
59 |
+
"01CA9T-0130C-922",
|
60 |
+
"0NG3DT-02003-999",
|
61 |
+
"3R1F67-1JCYZ-0092",
|
62 |
+
"211740-3R419-06935",
|
63 |
+
"6R1J75-1DQSZ-0943"
|
64 |
+
]
|
65 |
+
|
66 |
+
# Gradio interface elements
|
67 |
+
interface = gr.Interface(
|
68 |
+
fn=predict_return, # Function that handles the prediction logic
|
69 |
+
inputs=[
|
70 |
+
gr.CheckboxGroup(choices=combinations, label="Select Products"), # Allow multiple product selections
|
71 |
+
gr.Slider(0, 10, step=1, label="Total Customer Purchases", value=0),
|
72 |
+
gr.Slider(0, 10, step=1, label="Total Customer Returns", value=0)
|
73 |
+
],
|
74 |
+
outputs="text", # Display predictions as text
|
75 |
+
live=True # To enable the interface to interact live
|
76 |
+
)
|
77 |
+
|
78 |
+
# Launch the Gradio interface
|
79 |
+
interface.launch()
|
requirements.txt
CHANGED
@@ -2,6 +2,7 @@ black
|
|
2 |
codecarbon
|
3 |
fastapi
|
4 |
flake8
|
|
|
5 |
ipython
|
6 |
isort
|
7 |
jupyterlab
|
|
|
2 |
codecarbon
|
3 |
fastapi
|
4 |
flake8
|
5 |
+
gradio
|
6 |
ipython
|
7 |
isort
|
8 |
jupyterlab
|