molinari135 commited on
Commit
b97158f
·
verified ·
1 Parent(s): 586ecd9

Update product_return_prediction/api.py

Browse files
Files changed (1) hide show
  1. product_return_prediction/api.py +3 -20
product_return_prediction/api.py CHANGED
@@ -1,18 +1,12 @@
 
 
1
  from fastapi import FastAPI, HTTPException
2
  from pydantic import BaseModel, Field
3
  from datasets import load_dataset
4
- import pandas as pd
5
- import json
6
- import os
7
- import pickle
8
- import requests
9
  from pathlib import Path
10
  from product_return_prediction.dataset import prepare_inventory, scale_data_with_trained_scaler
11
  from product_return_prediction.monitoring import instrumentator
12
- from product_return_prediction.config import MODELS_DIR, EXTERNAL_DATA_DIR
13
- from huggingface_hub import hf_hub_download
14
-
15
- from huggingface_hub import login
16
 
17
  login(token=os.getenv("HUGGINGFACE_TOKEN"))
18
 
@@ -151,18 +145,7 @@ async def predict(products: ProductRequest):
151
  filtered_inventory, products.total_customer_purchases, products.total_customer_returns
152
  )
153
 
154
- # models_uri = "https://huggingface.co/molinari135/se4ai-models/resolve/main/"
155
- # model_path = MODELS_DIR / model_name
156
- # scaler_path = MODELS_DIR / scaler_name
157
-
158
- # headers = f"Authorization: Bearer {hf_token}"
159
-
160
- # download_file(f"{models_uri}{model_name}", model_path, headers)
161
- # download_file(f"{models_uri}{scaler_name}", scaler_path, headers)
162
-
163
  model = load_model(hf_hub_download(repo_id="molinari135/se4ai-models", filename="svm.pkl"))
164
-
165
- # model = pickle.load(hf_hub_download(repo_id="molinari135/se4ai-models", filename="svm.pkl"))
166
 
167
  scaled_inventory = apply_scaling(prepared_inventory, scaler_file)
168
  predictions, probabilities = make_predictions(model, scaled_inventory)
 
1
+ import json, os, pickle, requests
2
+ import pandas as pd
3
  from fastapi import FastAPI, HTTPException
4
  from pydantic import BaseModel, Field
5
  from datasets import load_dataset
 
 
 
 
 
6
  from pathlib import Path
7
  from product_return_prediction.dataset import prepare_inventory, scale_data_with_trained_scaler
8
  from product_return_prediction.monitoring import instrumentator
9
+ from huggingface_hub import hf_hub_download, login
 
 
 
10
 
11
  login(token=os.getenv("HUGGINGFACE_TOKEN"))
12
 
 
145
  filtered_inventory, products.total_customer_purchases, products.total_customer_returns
146
  )
147
 
 
 
 
 
 
 
 
 
 
148
  model = load_model(hf_hub_download(repo_id="molinari135/se4ai-models", filename="svm.pkl"))
 
 
149
 
150
  scaled_inventory = apply_scaling(prepared_inventory, scaler_file)
151
  predictions, probabilities = make_predictions(model, scaled_inventory)