Spaces:
Running
Running
File size: 4,236 Bytes
d4adf88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
from requests import Session
from uuid import uuid4
from json import loads
import os
import json
import requests
from ...typing import sha256, Dict, get_type_hints
url = 'https://gpt-gm.h2o.ai'
model = ['falcon-40b', 'falcon-7b', 'llama-13b']
supports_stream = True
needs_auth = False
models = {
'falcon-7b': 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3',
'falcon-40b': 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1',
'llama-13b': 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b'
}
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
conversation = 'instruction: this is a conversation beween, a user and an AI assistant, respond to the latest message, referring to the conversation if needed\n'
for message in messages:
conversation += '%s: %s\n' % (message['role'], message['content'])
conversation += 'assistant:'
client = Session()
client.headers = {
'authority': 'gpt-gm.h2o.ai',
'origin': 'https://gpt-gm.h2o.ai',
'referer': 'https://gpt-gm.h2o.ai/',
'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'document',
'sec-fetch-mode': 'navigate',
'sec-fetch-site': 'same-origin',
'sec-fetch-user': '?1',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',
}
client.get('https://gpt-gm.h2o.ai/')
response = client.post('https://gpt-gm.h2o.ai/settings', data={
'ethicsModalAccepted': 'true',
'shareConversationsWithModelAuthors': 'true',
'ethicsModalAcceptedAt': '',
'activeModel': 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1',
'searchEnabled': 'true',
})
headers = {
'authority': 'gpt-gm.h2o.ai',
'accept': '*/*',
'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
'origin': 'https://gpt-gm.h2o.ai',
'referer': 'https://gpt-gm.h2o.ai/',
'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',
}
json_data = {
'model': models[model]
}
response = client.post('https://gpt-gm.h2o.ai/conversation',
headers=headers, json=json_data)
conversationId = response.json()['conversationId']
completion = client.post(f'https://gpt-gm.h2o.ai/conversation/{conversationId}', stream=True, json = {
'inputs': conversation,
'parameters': {
'temperature': kwargs.get('temperature', 0.4),
'truncate': kwargs.get('truncate', 2048),
'max_new_tokens': kwargs.get('max_new_tokens', 1024),
'do_sample': kwargs.get('do_sample', True),
'repetition_penalty': kwargs.get('repetition_penalty', 1.2),
'return_full_text': kwargs.get('return_full_text', False)
},
'stream': True,
'options': {
'id': kwargs.get('id', str(uuid4())),
'response_id': kwargs.get('response_id', str(uuid4())),
'is_retry': False,
'use_cache': False,
'web_search_id': ''
}
})
for line in completion.iter_lines():
if b'data' in line:
line = loads(line.decode('utf-8').replace('data:', ''))
token = line['token']['text']
if token == '<|endoftext|>':
break
else:
yield (token)
params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
'(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]]) |