import os # os.system("pip install scipy") os.system('pip install -r requirements.txt') import streamlit as st from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, pipeline from datasets import load_dataset import torch import soundfile as sf from PIL import Image import io # 定义生成语音的函数 def generate_speech(text, model, processor, vocoder, speaker_embeddings): inputs = processor(text=text, return_tensors="pt") generated_speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) sf.write("speech.wav", generated_speech.numpy(), samplerate=16000) return "speech.wav" # 初始化模型和处理器 processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Streamlit UI st.title('Visual Question Answering and Text-to-Speech App') uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png"]) default_question = "How many people and what is the color of this image?" user_question = st.text_input("Enter your question", value=default_question) if st.button("Answer and Generate Speech"): if uploaded_image: image = Image.open(io.BytesIO(uploaded_image.getvalue())) vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa") vqa_result = vqa_pipeline({"image": image, "question": user_question}) answer = vqa_result[0]['answer'] # Assume the answer is in the first result display_text = f"Question: {user_question} Answer: {answer}" st.write(display_text) # Display the answer # Generate and play speech audio_path = generate_speech(display_text, model, processor, vocoder, speaker_embeddings) audio_file = open(audio_path, 'rb') audio_bytes = audio_file.read() st.audio(audio_bytes, format="audio/wav") else: st.write("Please upload an image and enter a question.")