Spaces:
Sleeping
Sleeping
import pandas as pd | |
from PIL import Image | |
import streamlit as st | |
from transformers import pipeline | |
pipeline = pipeline(task="image-classification", model="nateraw/vit-age-classifier") | |
def predict(image): | |
predictions = pipeline(image) | |
return {p["label"]: p["score"] for p in predictions} | |
def main(): | |
st.title("Age Classification From Image") | |
with st.form("my_form"): | |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Your uploaded Image", use_column_width=True) | |
clicked = st.form_submit_button("Press to predict") | |
if clicked: | |
results = predict(image) | |
k = [] | |
v = [] | |
for key, value in results.items(): | |
value = round(value*100,2) | |
v.append(value) | |
k.append(key) | |
vp = [str(item) + '%' for item in v] | |
result = k[0] | |
st.success('The predicted age is {}'.format(result)) | |
df = pd.DataFrame({'Prediction': k,'Accuracy':vp}) | |
st.dataframe(df,hide_index=True) | |
if __name__ == "__main__": | |
main() |