Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fastapi
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from llama_cpp import Llama
|
4 |
+
from time import time
|
5 |
+
import logging
|
6 |
+
|
7 |
+
|
8 |
+
MODEL_PATH = "./qwen1_5-0_5b-chat-q4_0.gguf" #"./qwen1_5-0_5b-chat-q4_0.gguf"
|
9 |
+
|
10 |
+
# Logger setup
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# Initialize Llama model
|
15 |
+
"""
|
16 |
+
try:
|
17 |
+
llm = Llama.from_pretrained(
|
18 |
+
repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
|
19 |
+
filename="*q4_0.gguf",
|
20 |
+
verbose=False,
|
21 |
+
n_ctx=4096,
|
22 |
+
n_threads=4,
|
23 |
+
n_gpu_layers=0,
|
24 |
+
)
|
25 |
+
|
26 |
+
llm = Llama(
|
27 |
+
model_path=MODEL_PATH,
|
28 |
+
chat_format="llama-2",
|
29 |
+
n_ctx=4096,
|
30 |
+
n_threads=8,
|
31 |
+
n_gpu_layers=0,
|
32 |
+
)
|
33 |
+
|
34 |
+
except Exception as e:
|
35 |
+
logger.error(f"Failed to load model: {e}")
|
36 |
+
raise
|
37 |
+
"""
|
38 |
+
|
39 |
+
app = fastapi.FastAPI()
|
40 |
+
|
41 |
+
|
42 |
+
@app.get("/")
|
43 |
+
def index():
|
44 |
+
return fastapi.responses.RedirectResponse(url="/docs")
|
45 |
+
|
46 |
+
|
47 |
+
@app.get("/health")
|
48 |
+
def health():
|
49 |
+
return {"status": "ok"}
|
50 |
+
|
51 |
+
|
52 |
+
# Chat Completion API
|
53 |
+
@app.get("/generate")
|
54 |
+
async def complete(
|
55 |
+
question: str,
|
56 |
+
system: str = "You are a story writing assistant.",
|
57 |
+
temperature: float = 0.7,
|
58 |
+
seed: int = 42,
|
59 |
+
) -> dict:
|
60 |
+
try:
|
61 |
+
st = time()
|
62 |
+
output = llm.create_chat_completion(
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": system},
|
65 |
+
{"role": "user", "content": question},
|
66 |
+
],
|
67 |
+
temperature=temperature,
|
68 |
+
seed=seed,
|
69 |
+
)
|
70 |
+
et = time()
|
71 |
+
output["time"] = et - st
|
72 |
+
return output
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"Error in /complete endpoint: {e}")
|
75 |
+
return JSONResponse(
|
76 |
+
status_code=500, content={"message": "Internal Server Error"}
|
77 |
+
)
|
78 |
+
|
79 |
+
"""
|
80 |
+
if __name__ == "__main__":
|
81 |
+
import uvicorn
|
82 |
+
|
83 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
84 |
+
"""
|