# Define the image argument and provide a default value #ARG IMAGE=python:3-slim-bullseye # Use the image as specified #FROM ${IMAGE} # Re-declare the ARG after FROM #ARG IMAGE # Update and upgrade the existing packages #RUN apt-get update && apt-get upgrade -y && apt-get install -y --no-install-recommends \ # python3 \ # python3-pip \ # ninja-build \ # libopenblas-dev \ # build-essential #RUN mkdir /app #WORKDIR /app #COPY . . #RUN python3 -m pip install --upgrade pip #RUN make deps && make build && make clean # Set environment variable for the host #ENV HOST=0.0.0.0 #ENV PORT=7860 #ENV ORIGINS=* # Install requirements.txt #RUN pip install --no-cache-dir --upgrade -r requirements.txt # Set up a new user named "user" with user ID 1000 #RUN useradd -m -u 1000 user # Switch to the "user" user #USER user # Set home to the user's home directory #ENV HOME=/home/user \ # PATH=/home/user/.local/bin:$PATH # Set the working directory to the user's home directory # WORKDIR $HOME/app # Copy the current directory contents into the container at $HOME/app setting the owner to the user #COPY --chown=user . $HOME # Start the FastAPI app on port 7860, the default port expected by Spaces #CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"] #ENTRYPOINT ["python3"] #ENTRYPOINT ["python3", "-m", "llama_cpp.server", "--hf_model_repo_id", "Qwen/Qwen1.5-0.5B-Chat-GGUF", "--model", "*q4_0.gguf", "--host", "0.0.0.0"] FROM python:3-slim-bullseye # It's not at all clear why the image published by the llama-cpp-python author doesn't work, # but it can't find the llama libraries, soI had to re-build the docker container # We need to set the host to 0.0.0.0 to allow outside access ENV HOST 0.0.0.0 COPY . . # Install the package RUN apt update && apt install -y libopenblas-dev ninja-build build-essential pkg-config RUN python -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette pydantic-settings starlette-context RUN CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama_cpp_python --verbose # Run the server CMD python3 -m llama_cpp.server --model $MODEL --n_gpu_layers $N_GPU_LAYERS --n_batch $N_BATCH