Spaces:
Sleeping
Sleeping
File size: 1,888 Bytes
cb70b4c 249653c 3eeeced 48b3a1c 249653c 3eeeced 7c4c927 fffc3a2 8503f33 3eeeced 115b639 d52eb29 115b639 7c4c927 a800e1f 7c4c927 fffc3a2 3eeeced fffc3a2 115b639 d1879c0 4aa43f9 d1879c0 115b639 67adcd0 4de4ec7 115b639 7c4c927 fffc3a2 5264799 cb70b4c 1f780c8 fffc3a2 cb70b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
import requests
import torch
import torch.nn as nn
import timm
model = timm.create_model("hf_hub:nateraw/resnet18-random", pretrained=True)
model.eval()
import os
def print_bn():
bn_data = []
for m in model.modules():
if(type(m) is nn.BatchNorm2d):
# print(m.momentum)
bn_data.extend(m.running_mean.data.numpy().tolist())
bn_data.extend(m.running_var.data.numpy().tolist())
bn_data.append(m.momentum)
return bn_data
def update_bn(image):
cursor_im = 0
image = image.reshape(-1)
for m in model.modules():
if(type(m) is nn.BatchNorm2d):
if(cursor_im < image.shape[0]):
M = m.running_mean.data.shape[0]
if(cursor_im+M < image.shape[0]):
m.running_mean.data = image[cursor_im:cursor_im+M]
cursor_im += M # next
else:
m.running_mean.data[:image.shape[0]-cursor_im] = image[cursor_im:]
break # finish
return
def greet(image):
# url = f'https://huggingface.co/spaces?p=1&sort=modified&search=GPT'
# html = request_url(url)
# key = os.getenv("OPENAI_API_KEY")
# x = torch.ones([1,3,224,224])
if(image is None):
bn_data = print_bn()
return ','.join([f'{x:.10f}' for x in bn_data])
else:
print(type(image))
image = torch.tensor(image).float()
print(image.min(), image.max())
image = image/255.0
image = image.unsqueeze(0)
print(image.shape)
image = torch.permute(image, [0,3,1,2])
out = model(image)
update_bn(image)
# model.train()
return "Hello world!"
image = gr.inputs.Image(label="Upload a photo for beautify", shape=(224,224))
iface = gr.Interface(fn=greet, inputs=image, outputs="text")
iface.launch() |