hellominori / app.py
morinop's picture
Update app.py
d3cca70
raw
history blame
1.28 kB
import gradio as gr
import requests
import torch
import torch.nn as nn
import timm
model = timm.create_model("hf_hub:nateraw/resnet18-random", pretrained=True)
model.train()
import os
def print_bn():
bn_data = []
for m in model.modules():
if(type(m) is nn.BatchNorm2d):
# print(m.momentum)
bn_data.extend(m.running_mean.data.numpy().tolist())
bn_data.extend(m.running_var.data.numpy().tolist())
bn_data.append(m.momentum)
return bn_data
def greet(image):
# url = f'https://huggingface.co/spaces?p=1&sort=modified&search=GPT'
# html = request_url(url)
# key = os.getenv("OPENAI_API_KEY")
# x = torch.ones([1,3,224,224])
if(image is None):
bn_data = print_bn()
return ','.join([f'{x:.5f}' for x in bn_data])
else:
print(type(image))
image = torch.tensor(image).float()
print(image.min(), image.max())
image = image/255.0
image = image.unsqueeze(0)
image = torch.permute(image, [0,2,3,1])
out = model(image)
# model.train()
return "Hello world!"
image = gr.inputs.Image(label="Upload a photo for beautify", shape=(224,224))
iface = gr.Interface(fn=greet, inputs=image, outputs="text")
iface.launch()