|
import gradio as gr |
|
|
|
|
|
import torch |
|
import torchvision |
|
import timm |
|
|
|
checkpoint = torch.load('v4-epoch=19-val_loss=0.6964-val_accuracy=0.8964.ckpt', map_location=torch.device('cpu')) |
|
state_dict = checkpoint["state_dict"] |
|
model_weights = state_dict |
|
for key in list(model_weights): |
|
model_weights[key.replace("backbone.", "")] = model_weights.pop(key) |
|
|
|
|
|
def get_model(): |
|
model = timm.create_model('tf_efficientnet_b1', pretrained=True, num_classes=2, global_pool='catavgmax') |
|
num_in_features = model.get_classifier().in_features |
|
from torch import nn |
|
|
|
model.fc = nn.Sequential( |
|
nn.Linear(in_features=num_in_features, out_features=1024, bias=False), |
|
nn.ReLU(), |
|
nn.Linear(in_features=1024, out_features=2, bias=False), |
|
) |
|
|
|
return model |
|
|
|
model = get_model() |
|
|
|
model.load_state_dict(model_weights) |
|
model.eval() |
|
|
|
import requests |
|
from PIL import Image |
|
from torchvision import transforms |
|
|
|
|
|
labels = ['good', 'ill'] |
|
CROP=384 |
|
|
|
def predict(inp): |
|
img = torchvision.transforms.ToTensor()(inp) |
|
img = torchvision.transforms.Resize((800, 800))(img) |
|
img = torchvision.transforms.CenterCrop(CROP)(img) |
|
img = img.unsqueeze(0) |
|
with torch.no_grad(): |
|
prediction = model(img).softmax(1).numpy() |
|
confidences = {labels[i]: float(prediction[i]) for i in range(2)} |
|
return confidences |
|
|
|
import gradio as gr |
|
|
|
gr.Interface(fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Label(num_top_classes=1), |
|
).launch() |
|
|
|
|
|
|