import gradio as gr import torch model = torch.load('v4-epoch=19-val_loss=0.6964-val_accuracy=0.8964.ckpt') import requests from PIL import Image from torchvision import transforms # Download human-readable labels for ImageNet. labels = ['good', 'ill'] def predict(inp): img = transforms.ToTensor()(inp) img = torchvision.transforms.Resize((800, 800))(img) img = torchvision.transforms.CenterCrop(CROP)(img) img = img.unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(model(img)[0], dim=0) confidences = {labels[i]: float(prediction[i]) for i in range(2)} return confidences import gradio as gr gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), ).launch()