import gradio as gr import torch import torchvision import timm import cv2 from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image print(timm.__version__) # checkpoint = torch.load('v6-epoch=18-val_loss=0.0313-val_accuracy=0.9618.ckpt', map_location=torch.device('cpu')) checkpoint = torch.load('v7-epoch=39-val_loss=0.0222-val_accuracy=0.9806.ckpt', map_location=torch.device('cpu')) state_dict = checkpoint["state_dict"] model_weights = state_dict for key in list(model_weights): model_weights[key.replace("backbone.", "")] = model_weights.pop(key) def get_model(): model = timm.create_model('convnext_base.fb_in22k_ft_in1k', pretrained=False, num_classes=2) return model model = get_model() model.load_state_dict(model_weights) model.eval() import requests from PIL import Image from torchvision import transforms import albumentations as A from albumentations.pytorch import ToTensorV2 CROP = 224 SIZE = CROP + CROP//8 ho_trans_center = A.Compose([ A.Resize(SIZE,SIZE, interpolation=cv2.INTER_AREA), A.CenterCrop(height=CROP, width=CROP, always_apply=True), ]) topt = A.Compose([ A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensorV2(), ]) # Download human-readable labels for ImageNet. labels = ['good', 'ill'] def predict(inp): target_layers = [model.norm_pre] cam = GradCAM(model=model, target_layers=target_layers) img = ho_trans_center(image = inp)['image'] rgb_img = img.copy()/255. img = topt(image = img)['image'] img = img.unsqueeze(0) with torch.no_grad(): prediction = model(img).softmax(1).numpy() confidences = {labels[i]: float(prediction[0][i]) for i in range(2)} grad = cam(input_tensor=img, targets=None, # eigen_smooth=args.eigen_smooth, # aug_smooth=args.aug_smooth ) grad = grad[0, :] print(rgb_img.shape, rgb_img.dtype) print(grad.shape, grad.dtype) cam_image = show_cam_on_image(rgb_img, grad) return confidences,cam_image import gradio as gr gr.Interface(fn=predict, inputs=gr.Image(), outputs=[gr.Label(num_top_classes=1), "image"], ).launch()