Spaces:
Sleeping
Sleeping
### Import Libraries ### | |
import streamlit as st | |
import itertools | |
from word_piece_tokenizer import WordPieceTokenizer | |
import tiktoken | |
from transformers import AutoTokenizer | |
from nltk.tokenize import TreebankWordTokenizer, wordpunct_tokenize, TweetTokenizer | |
qwen_tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen2.5-0.5B-Instruct') | |
ruadapt_tokenizer = AutoTokenizer.from_pretrained('msu-rcc-lair/RuadaptQwen2.5-32B-instruct') | |
### User Interface ### | |
st.title("Tokenization") | |
st.write( | |
"""Tokenization is the first step of many natural language processing tasks. A tokenizer breaks down the text into smaller parts, | |
called tokens. For example, a token could be an entire word or a sub-word made of a sequence of letters. After the tokens are created, they are | |
translated into a set of numerical IDs in order to be processed. Choosing a tokenizer affects the speed and quality of your results. When using a large language model (LLM), | |
the tokenizer used to train the model should be used to ensure compatibility.""" | |
) | |
txt = st.text_area("Paste text to tokenize", max_chars=1000) | |
tokenizer = st.selectbox( | |
"Tokenizer", | |
( | |
"White Space", | |
"Qwen2.5 Tokenizer", | |
"RuAdapt Tokenizer", | |
"Byte Pair Encoding (Open AI GPT-4o)", | |
), | |
index=None, | |
placeholder="Select a tokenizer", | |
) | |
token_id = st.checkbox("Translate tokens into IDs", value=False) | |
### Helper Functions ### | |
def white_space_tokenizer(txt): | |
return txt.split() | |
def treebank_tokenizer(txt): | |
return TreebankWordTokenizer().tokenize(txt) | |
## Write tokenized output to screen ## | |
# Output colors to cycle through | |
colors = ["blue", "green", "orange", "red", "violet"] | |
color = itertools.cycle(colors) | |
# Stream data to screen | |
def stream_data(): | |
for token in split_tokens: | |
yield f":{next(color)}-background[{token}] " | |
def unique_list(token_list): | |
token_set = set(token_list) | |
return list(token_set) | |
def stream_token_ids(): | |
st.write(f"Unique tokens: {len(unique_tokens)}") | |
for token in split_tokens: | |
yield f":{next(color)}-background[{unique_tokens.index(token)}] " | |
def stream_wp_token_ids(): | |
st.write(f"Unique tokens: {len(unique_list(ids))}") | |
for id in ids: | |
yield f":{next(color)}-background[{id}] " | |
### Tokenizer Descriptions ### | |
white_space_desc = """A basic word-level tokenizer that splits text based on white space. This tokenizer is simple and fast, but it will not handle punctuation or special characters.""" | |
treebank_desc = """The Penn Treebank tokenizer is the default word-level tokenizer in the Natural Language Toolkit (NLTK). It is a more advanced tokenizer that can handle punctuation and special characters.""" | |
tweet_desc = """The TweetTokenizer is a specialized word-level tokenizer that is designed to handle text from social media platforms. It is able to handle hashtags, mentions, and emojis.""" | |
wordpiece_desc = """Word Piece is a sub-word tokenizer that is used in BERT and other transformer models. It breaks down words into smaller sub-word units, which can be useful for handling rare or out-of-vocabulary words.""" | |
bpe_desc = """Byte Pair Encoding (BPE) is a sub-word tokenizer that is used in models like Open AI's GPT-4o. It breaks down words into smaller sub-word units based on the frequency of character pairs in the text.""" | |
# Create a dictionary of tokenized words | |
## Tokenizer Selection ## | |
if tokenizer == "White Space": | |
with st.expander("About White Space Tokenizer"): | |
st.write(white_space_desc) | |
split_tokens = white_space_tokenizer(txt) | |
st.write(stream_data) | |
if token_id == True: | |
color = itertools.cycle(colors) | |
unique_tokens = unique_list(split_tokens) | |
st.write(stream_token_ids) | |
elif tokenizer == "Qwen2.5 Tokenizer": | |
with st.expander("About Qwen2.5 Tokenizer"): | |
st.write('') | |
ids = qwen_tokenizer.encode(txt) | |
split_tokens = qwen_tokenizer.tokenize(txt) | |
st.write(stream_data) | |
if token_id == True: | |
color = itertools.cycle(colors) | |
st.write(stream_wp_token_ids) | |
elif tokenizer == "RuAdapt Tokenizer": | |
with st.expander("About RuAdapt Tokenizer"): | |
st.write('') | |
ids = ruadapt_tokenizer.encode(txt) | |
split_tokens = ruadapt_tokenizer.tokenize(txt) | |
st.write(stream_data) | |
if token_id == True: | |
color = itertools.cycle(colors) | |
st.write(stream_wp_token_ids) | |
elif tokenizer == "Byte Pair Encoding (Open AI GPT-4o)": | |
with st.expander("About Byte Pair Encoding (BPE)"): | |
st.write(bpe_desc) | |
encoding = tiktoken.encoding_for_model("gpt-4o") | |
ids = encoding.encode(txt) | |
split_tokens = [ | |
encoding.decode_single_token_bytes(id).decode("utf-8") for id in ids | |
] | |
st.write(stream_data) | |
if token_id == True: | |
color = itertools.cycle(colors) | |
st.write(stream_wp_token_ids) | |