mponty's picture
Update app.py
96b0faa verified
raw
history blame
4.89 kB
### Import Libraries ###
import streamlit as st
import itertools
from word_piece_tokenizer import WordPieceTokenizer
import tiktoken
from transformers import AutoTokenizer
from nltk.tokenize import TreebankWordTokenizer, wordpunct_tokenize, TweetTokenizer
qwen_tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen2.5-0.5B-Instruct')
ruadapt_tokenizer = AutoTokenizer.from_pretrained('msu-rcc-lair/RuadaptQwen2.5-32B-instruct')
### User Interface ###
st.title("Tokenization")
st.write(
"""Tokenization is the first step of many natural language processing tasks. A tokenizer breaks down the text into smaller parts,
called tokens. For example, a token could be an entire word or a sub-word made of a sequence of letters. After the tokens are created, they are
translated into a set of numerical IDs in order to be processed. Choosing a tokenizer affects the speed and quality of your results. When using a large language model (LLM),
the tokenizer used to train the model should be used to ensure compatibility."""
)
txt = st.text_area("Paste text to tokenize", max_chars=1000)
tokenizer = st.selectbox(
"Tokenizer",
(
"White Space",
"Qwen2.5 Tokenizer",
"RuAdapt Tokenizer",
"Byte Pair Encoding (Open AI GPT-4o)",
),
index=None,
placeholder="Select a tokenizer",
)
token_id = st.checkbox("Translate tokens into IDs", value=False)
### Helper Functions ###
def white_space_tokenizer(txt):
return txt.split()
def treebank_tokenizer(txt):
return TreebankWordTokenizer().tokenize(txt)
## Write tokenized output to screen ##
# Output colors to cycle through
colors = ["blue", "green", "orange", "red", "violet"]
color = itertools.cycle(colors)
# Stream data to screen
def stream_data():
for token in split_tokens:
yield f":{next(color)}-background[{token}] "
def unique_list(token_list):
token_set = set(token_list)
return list(token_set)
def stream_token_ids():
st.write(f"Unique tokens: {len(unique_tokens)}")
for token in split_tokens:
yield f":{next(color)}-background[{unique_tokens.index(token)}] "
def stream_wp_token_ids():
st.write(f"Unique tokens: {len(unique_list(ids))}")
for id in ids:
yield f":{next(color)}-background[{id}] "
### Tokenizer Descriptions ###
white_space_desc = """A basic word-level tokenizer that splits text based on white space. This tokenizer is simple and fast, but it will not handle punctuation or special characters."""
treebank_desc = """The Penn Treebank tokenizer is the default word-level tokenizer in the Natural Language Toolkit (NLTK). It is a more advanced tokenizer that can handle punctuation and special characters."""
tweet_desc = """The TweetTokenizer is a specialized word-level tokenizer that is designed to handle text from social media platforms. It is able to handle hashtags, mentions, and emojis."""
wordpiece_desc = """Word Piece is a sub-word tokenizer that is used in BERT and other transformer models. It breaks down words into smaller sub-word units, which can be useful for handling rare or out-of-vocabulary words."""
bpe_desc = """Byte Pair Encoding (BPE) is a sub-word tokenizer that is used in models like Open AI's GPT-4o. It breaks down words into smaller sub-word units based on the frequency of character pairs in the text."""
# Create a dictionary of tokenized words
## Tokenizer Selection ##
if tokenizer == "White Space":
with st.expander("About White Space Tokenizer"):
st.write(white_space_desc)
split_tokens = white_space_tokenizer(txt)
st.write(stream_data)
if token_id == True:
color = itertools.cycle(colors)
unique_tokens = unique_list(split_tokens)
st.write(stream_token_ids)
elif tokenizer == "Qwen2.5 Tokenizer":
with st.expander("About Qwen2.5 Tokenizer"):
st.write('')
ids = qwen_tokenizer.encode(txt)
split_tokens = qwen_tokenizer.tokenize(txt)
st.write(stream_data)
if token_id == True:
color = itertools.cycle(colors)
st.write(stream_wp_token_ids)
elif tokenizer == "RuAdapt Tokenizer":
with st.expander("About RuAdapt Tokenizer"):
st.write('')
ids = ruadapt_tokenizer.encode(txt)
split_tokens = ruadapt_tokenizer.tokenize(txt)
st.write(stream_data)
if token_id == True:
color = itertools.cycle(colors)
st.write(stream_wp_token_ids)
elif tokenizer == "Byte Pair Encoding (Open AI GPT-4o)":
with st.expander("About Byte Pair Encoding (BPE)"):
st.write(bpe_desc)
encoding = tiktoken.encoding_for_model("gpt-4o")
ids = encoding.encode(txt)
split_tokens = [
encoding.decode_single_token_bytes(id).decode("utf-8") for id in ids
]
st.write(stream_data)
if token_id == True:
color = itertools.cycle(colors)
st.write(stream_wp_token_ids)