ArticleChatbot / document_qa /grobid_processors.py
lfoppiano's picture
fix invalid class encapsulation
cf77f40
raw
history blame
30.2 kB
import re
from collections import OrderedDict
from html import escape
from pathlib import Path
import dateparser
import grobid_tei_xml
from bs4 import BeautifulSoup
from tqdm import tqdm
def get_span_start(type, title=None):
title_ = ' title="' + title + '"' if title is not None else ""
return '<span class="label ' + type + '"' + title_ + '>'
def get_span_end():
return '</span>'
def get_rs_start(type):
return '<rs type="' + type + '">'
def get_rs_end():
return '</rs>'
def has_space_between_value_and_unit(quantity):
return quantity['offsetEnd'] < quantity['rawUnit']['offsetStart']
def decorate_text_with_annotations(text, spans, tag="span"):
"""
Decorate a text using spans, using two style defined by the tag:
- "span" generated HTML like annotated text
- "rs" generate XML like annotated text (format SuperMat)
"""
sorted_spans = list(sorted(spans, key=lambda item: item['offset_start']))
annotated_text = ""
start = 0
for span in sorted_spans:
type = span['type'].replace("<", "").replace(">", "")
if 'unit_type' in span and span['unit_type'] is not None:
type = span['unit_type'].replace(" ", "_")
annotated_text += escape(text[start: span['offset_start']])
title = span['quantified'] if 'quantified' in span else None
annotated_text += get_span_start(type, title) if tag == "span" else get_rs_start(type)
annotated_text += escape(text[span['offset_start']: span['offset_end']])
annotated_text += get_span_end() if tag == "span" else get_rs_end()
start = span['offset_end']
annotated_text += escape(text[start: len(text)])
return annotated_text
def extract_quantities(client, x_all, column_text_index):
# relevant_items = ['magnetic field strength', 'magnetic induction', 'maximum energy product',
# "magnetic flux density", "magnetic flux"]
# property_keywords = ['coercivity', 'remanence']
output_data = []
for idx, example in tqdm(enumerate(x_all), desc="extract quantities"):
text = example[column_text_index]
spans = GrobidQuantitiesProcessor(client).extract_quantities(text)
data_record = {
"id": example[0],
"filename": example[1],
"passage_id": example[2],
"text": text,
"spans": spans
}
output_data.append(data_record)
return output_data
def extract_materials(client, x_all, column_text_index):
output_data = []
for idx, example in tqdm(enumerate(x_all), desc="extract materials"):
text = example[column_text_index]
spans = GrobidMaterialsProcessor(client).extract_materials(text)
data_record = {
"id": example[0],
"filename": example[1],
"passage_id": example[2],
"text": text,
"spans": spans
}
output_data.append(data_record)
return output_data
def get_parsed_value_type(quantity):
if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']:
return quantity['parsedValue']['structure']['type']
class BaseProcessor(object):
# def __init__(self, grobid_superconductors_client=None, grobid_quantities_client=None):
# self.grobid_superconductors_client = grobid_superconductors_client
# self.grobid_quantities_client = grobid_quantities_client
patterns = [
r'\d+e\d+'
]
def post_process(self, text):
output = text.replace('À', '-')
output = output.replace('¼', '=')
output = output.replace('þ', '+')
output = output.replace('Â', 'x')
output = output.replace('$', '~')
output = output.replace('−', '-')
output = output.replace('–', '-')
for pattern in self.patterns:
output = re.sub(pattern, lambda match: match.group().replace('e', '-'), output)
return output
class GrobidProcessor(BaseProcessor):
def __init__(self, grobid_client):
# super().__init__()
self.grobid_client = grobid_client
def process_structure(self, input_path):
pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument",
input_path,
consolidate_header=True,
consolidate_citations=False,
segment_sentences=False,
tei_coordinates=False,
include_raw_citations=False,
include_raw_affiliations=False,
generateIDs=True)
if status != 200:
return
output_data = self.parse_grobid_xml(text)
output_data['filename'] = Path(pdf_file).stem.replace(".tei", "")
return output_data
def process_single(self, input_file):
doc = self.process_structure(input_file)
for paragraph in doc['passages']:
entities = self.process_single_text(paragraph['text'])
paragraph['spans'] = entities
return doc
def parse_grobid_xml(self, text):
output_data = OrderedDict()
doc_biblio = grobid_tei_xml.parse_document_xml(text)
biblio = {
"doi": doc_biblio.header.doi if doc_biblio.header.doi is not None else "",
"authors": ", ".join([author.full_name for author in doc_biblio.header.authors]),
"title": doc_biblio.header.title,
"hash": doc_biblio.pdf_md5
}
try:
year = dateparser.parse(doc_biblio.header.date).year
biblio["publication_year"] = year
except:
pass
output_data['biblio'] = biblio
passages = []
output_data['passages'] = passages
# if biblio['title'] is not None and len(biblio['title']) > 0:
# passages.append({
# "text": self.post_process(biblio['title']),
# "type": "paragraph",
# "section": "<header>",
# "subSection": "<title>",
# "passage_id": "title0"
# })
if doc_biblio.abstract is not None and len(doc_biblio.abstract) > 0:
passages.append({
"text": self.post_process(doc_biblio.abstract),
"type": "paragraph",
"section": "<header>",
"subSection": "<abstract>",
"passage_id": "abstract0"
})
soup = BeautifulSoup(text, 'xml')
text_blocks_body = get_children_body(soup, verbose=False)
passages.extend([
{
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
text.parent.name != "ref" or (
text.parent.name == "ref" and text.parent.attrs[
'type'] != 'bibr'))),
"type": "paragraph",
"section": "<body>",
"subSection": "<paragraph>",
"passage_id": str(paragraph_id) + str(sentence_id)
}
for paragraph_id, paragraph in enumerate(text_blocks_body) for
sentence_id, sentence in enumerate(paragraph)
])
text_blocks_figures = get_children_figures(soup, verbose=False)
passages.extend([
{
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
text.parent.name != "ref" or (
text.parent.name == "ref" and text.parent.attrs[
'type'] != 'bibr'))),
"type": "paragraph",
"section": "<body>",
"subSection": "<figure>",
"passage_id": str(paragraph_id) + str(sentence_id)
}
for paragraph_id, paragraph in enumerate(text_blocks_figures) for
sentence_id, sentence in enumerate(paragraph)
])
return output_data
class GrobidQuantitiesProcessor(BaseProcessor):
def __init__(self, grobid_quantities_client):
self.grobid_quantities_client = grobid_quantities_client
def extract_quantities(self, text):
status, result = self.grobid_quantities_client.process_text(text.strip())
if status != 200:
result = {}
spans = []
if 'measurements' in result:
found_measurements = self.parse_measurements_output(result)
for m in found_measurements:
item = {
"text": text[m['offset_start']:m['offset_end']],
'offset_start': m['offset_start'],
'offset_end': m['offset_end']
}
if 'raw' in m and m['raw'] != item['text']:
item['text'] = m['raw']
if 'quantified_substance' in m:
item['quantified'] = m['quantified_substance']
if 'type' in m:
item["unit_type"] = m['type']
item['type'] = 'property'
# if 'raw_value' in m:
# item['raw_value'] = m['raw_value']
spans.append(item)
return spans
@staticmethod
def parse_measurements_output(result):
measurements_output = []
for measurement in result['measurements']:
type = measurement['type']
measurement_output_object = {}
quantity_type = None
has_unit = False
parsed_value_type = None
if 'quantified' in measurement:
if 'normalizedName' in measurement['quantified']:
quantified_substance = measurement['quantified']['normalizedName']
measurement_output_object["quantified_substance"] = quantified_substance
if 'measurementOffsets' in measurement:
measurement_output_object["offset_start"] = measurement["measurementOffsets"]['start']
measurement_output_object["offset_end"] = measurement["measurementOffsets"]['end']
else:
# If there are no offsets we skip the measurement
continue
# if 'measurementRaw' in measurement:
# measurement_output_object['raw_value'] = measurement['measurementRaw']
if type == 'value':
quantity = measurement['quantity']
parsed_value = GrobidQuantitiesProcessor.get_parsed(quantity)
if parsed_value:
measurement_output_object['parsed'] = parsed_value
normalized_value = GrobidQuantitiesProcessor.get_normalized(quantity)
if normalized_value:
measurement_output_object['normalized'] = normalized_value
raw_value = GrobidQuantitiesProcessor.get_raw(quantity)
if raw_value:
measurement_output_object['raw'] = raw_value
if 'type' in quantity:
quantity_type = quantity['type']
if 'rawUnit' in quantity:
has_unit = True
parsed_value_type = get_parsed_value_type(quantity)
elif type == 'interval':
if 'quantityMost' in measurement:
quantityMost = measurement['quantityMost']
if 'type' in quantityMost:
quantity_type = quantityMost['type']
if 'rawUnit' in quantityMost:
has_unit = True
parsed_value_type = get_parsed_value_type(quantityMost)
if 'quantityLeast' in measurement:
quantityLeast = measurement['quantityLeast']
if 'type' in quantityLeast:
quantity_type = quantityLeast['type']
if 'rawUnit' in quantityLeast:
has_unit = True
parsed_value_type = get_parsed_value_type(quantityLeast)
elif type == 'listc':
quantities = measurement['quantities']
if 'type' in quantities[0]:
quantity_type = quantities[0]['type']
if 'rawUnit' in quantities[0]:
has_unit = True
parsed_value_type = get_parsed_value_type(quantities[0])
if quantity_type is not None or has_unit:
measurement_output_object['type'] = quantity_type
if parsed_value_type is None or parsed_value_type not in ['ALPHABETIC', 'TIME']:
measurements_output.append(measurement_output_object)
return measurements_output
@staticmethod
def get_parsed(quantity):
parsed_value = parsed_unit = None
if 'parsedValue' in quantity and 'parsed' in quantity['parsedValue']:
parsed_value = quantity['parsedValue']['parsed']
if 'parsedUnit' in quantity and 'name' in quantity['parsedUnit']:
parsed_unit = quantity['parsedUnit']['name']
if parsed_value and parsed_unit:
if has_space_between_value_and_unit(quantity):
return str(parsed_value) + str(parsed_unit)
else:
return str(parsed_value) + " " + str(parsed_unit)
@staticmethod
def get_normalized(quantity):
normalized_value = normalized_unit = None
if 'normalizedQuantity' in quantity:
normalized_value = quantity['normalizedQuantity']
if 'normalizedUnit' in quantity and 'name' in quantity['normalizedUnit']:
normalized_unit = quantity['normalizedUnit']['name']
if normalized_value and normalized_unit:
if has_space_between_value_and_unit(quantity):
return str(normalized_value) + " " + str(normalized_unit)
else:
return str(normalized_value) + str(normalized_unit)
@staticmethod
def get_raw(quantity):
raw_value = raw_unit = None
if 'rawValue' in quantity:
raw_value = quantity['rawValue']
if 'rawUnit' in quantity and 'name' in quantity['rawUnit']:
raw_unit = quantity['rawUnit']['name']
if raw_value and raw_unit:
if has_space_between_value_and_unit(quantity):
return str(raw_value) + " " + str(raw_unit)
else:
return str(raw_value) + str(raw_unit)
class GrobidMaterialsProcessor(BaseProcessor):
def __init__(self, grobid_superconductors_client):
self.grobid_superconductors_client = grobid_superconductors_client
def extract_materials(self, text):
preprocessed_text = text.strip()
status, result = self.grobid_superconductors_client.process_text(preprocessed_text,
"processText_disable_linking")
if status != 200:
result = {}
spans = []
if 'passages' in result:
materials = self.parse_superconductors_output(result, preprocessed_text)
for m in materials:
item = {"text": preprocessed_text[m['offset_start']:m['offset_end']]}
item['offset_start'] = m['offset_start']
item['offset_end'] = m['offset_end']
if 'formula' in m:
item["formula"] = m['formula']
item['type'] = 'material'
item['raw_value'] = m['text']
spans.append(item)
return spans
def parse_materials(self, text):
status, result = self.grobid_superconductors_client.process_texts(text.strip(), "parseMaterials")
if status != 200:
result = []
results = []
for position_material in result:
compositions = []
for material in position_material:
if 'resolvedFormulas' in material:
for resolved_formula in material['resolvedFormulas']:
if 'formulaComposition' in resolved_formula:
compositions.append(resolved_formula['formulaComposition'])
elif 'formula' in material:
if 'formulaComposition' in material['formula']:
compositions.append(material['formula']['formulaComposition'])
results.append(compositions)
return results
def parse_material(self, text):
status, result = self.grobid_superconductors_client.process_text(text.strip(), "parseMaterial")
if status != 200:
result = []
compositions = []
for material in result:
if 'resolvedFormulas' in material:
for resolved_formula in material['resolvedFormulas']:
if 'formulaComposition' in resolved_formula:
compositions.append(resolved_formula['formulaComposition'])
elif 'formula' in material:
if 'formulaComposition' in material['formula']:
compositions.append(material['formula']['formulaComposition'])
return compositions
@staticmethod
def parse_superconductors_output(result, original_text):
materials = []
for passage in result['passages']:
sentence_offset = original_text.index(passage['text'])
if 'spans' in passage:
spans = passage['spans']
for material_span in filter(lambda s: s['type'] == '<material>', spans):
text_ = material_span['text']
base_material_information = {
"text": text_,
"offset_start": sentence_offset + material_span['offset_start'],
'offset_end': sentence_offset + material_span['offset_end']
}
materials.append(base_material_information)
return materials
class GrobidAggregationProcessor(GrobidProcessor, GrobidQuantitiesProcessor, GrobidMaterialsProcessor):
def __init__(self, grobid_client, grobid_quantities_client=None, grobid_superconductors_client=None):
GrobidProcessor.__init__(self, grobid_client)
self.gqp = GrobidQuantitiesProcessor(grobid_quantities_client)
self.gmp = GrobidMaterialsProcessor(grobid_superconductors_client)
def process_single_text(self, text):
extracted_quantities_spans = self.gqp.extract_quantities(text)
extracted_materials_spans = self.gmp.extract_materials(text)
all_entities = extracted_quantities_spans + extracted_materials_spans
entities = self.prune_overlapping_annotations(all_entities)
return entities
def extract_quantities(self, text):
return self.gqp.extract_quantities(text)
def extract_materials(self, text):
return self.gmp.extract_materials(text)
@staticmethod
def prune_overlapping_annotations(entities: list) -> list:
# Sorting by offsets
sorted_entities = sorted(entities, key=lambda d: d['offset_start'])
if len(entities) <= 1:
return sorted_entities
to_be_removed = []
previous = None
first = True
for current in sorted_entities:
if first:
first = False
previous = current
continue
if previous['offset_start'] < current['offset_start'] \
and previous['offset_end'] < current['offset_end'] \
and (previous['offset_end'] < current['offset_start'] \
and not (previous['text'] == "-" and current['text'][0].isdigit())):
previous = current
continue
if previous['offset_end'] < current['offset_end']:
if current['type'] == previous['type']:
# Type is the same
if current['offset_start'] == previous['offset_end']:
if current['type'] == 'property':
if current['text'].startswith("."):
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# current entity starts with a ".", suspiciously look like a truncated value
to_be_removed.append(previous)
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
elif previous['text'].endswith(".") and current['text'][0].isdigit():
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous entity ends with ".", current entity starts with a number
to_be_removed.append(previous)
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
elif previous['text'].startswith("-"):
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous starts with a `-`, sherlock this is another truncated value
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
to_be_removed.append(previous)
else:
print("Other cases to be considered: ", previous, current)
else:
if current['text'].startswith("-"):
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous starts with a `-`, sherlock this is another truncated value
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
to_be_removed.append(previous)
else:
print("Other cases to be considered: ", previous, current)
elif previous['text'] == "-" and current['text'][0].isdigit():
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous starts with a `-`, sherlock this is another truncated value
current['text'] = previous['text'] + " " * (current['offset_start'] - previous['offset_end']) + \
current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
to_be_removed.append(previous)
else:
print(
f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# take the largest one
if len(previous['text']) > len(current['text']):
to_be_removed.append(current)
elif len(previous['text']) < len(current['text']):
to_be_removed.append(previous)
else:
to_be_removed.append(previous)
elif current['type'] != previous['type']:
print(
f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
if len(previous['text']) > len(current['text']):
to_be_removed.append(current)
elif len(previous['text']) < len(current['text']):
to_be_removed.append(previous)
else:
if current['type'] == "material":
to_be_removed.append(previous)
else:
to_be_removed.append(current)
previous = current
elif previous['offset_end'] > current['offset_end']:
to_be_removed.append(current)
# the previous goes after the current, so we keep the previous and we discard the current
else:
if current['type'] == "material":
to_be_removed.append(previous)
else:
to_be_removed.append(current)
previous = current
new_sorted_entities = [e for e in sorted_entities if e not in to_be_removed]
return new_sorted_entities
class XmlProcessor(BaseProcessor):
def __init__(self, grobid_superconductors_client, grobid_quantities_client):
super().__init__(grobid_superconductors_client, grobid_quantities_client)
def process_structure(self, input_file):
text = ""
with open(input_file, encoding='utf-8') as fi:
text = fi.read()
output_data = self.parse_xml(text)
output_data['filename'] = Path(input_file).stem.replace(".tei", "")
return output_data
def process_single(self, input_file):
doc = self.process_structure(input_file)
for paragraph in doc['passages']:
entities = self.process_single_text(paragraph['text'])
paragraph['spans'] = entities
return doc
def parse_xml(self, text):
output_data = OrderedDict()
soup = BeautifulSoup(text, 'xml')
text_blocks_children = get_children_list_supermat(soup, verbose=False)
passages = []
output_data['passages'] = passages
passages.extend([
{
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
text.parent.name != "ref" or (
text.parent.name == "ref" and text.parent.attrs[
'type'] != 'bibr'))),
"type": "paragraph",
"section": "<body>",
"subSection": "<paragraph>",
"passage_id": str(paragraph_id) + str(sentence_id)
}
for paragraph_id, paragraph in enumerate(text_blocks_children) for
sentence_id, sentence in enumerate(paragraph)
])
return output_data
def get_children_list_supermat(soup, use_paragraphs=False, verbose=False):
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.tei.children:
if child.name == 'teiHeader':
pass
children.append(child.find_all("title"))
children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
children.extend([subchild.find_all(child_name) for subchild in child.find_all("ab", {"type": "keywords"})])
elif child.name == 'text':
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children
def get_children_list_grobid(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.TEI.children:
if child.name == 'teiHeader':
pass
# children.extend(child.find_all("title", attrs={"level": "a"}, limit=1))
# children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
elif child.name == 'text':
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children
def get_children_body(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.TEI.children:
if child.name == 'text':
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children
def get_children_figures(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.TEI.children:
if child.name == 'text':
children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children