Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,191 Bytes
9bdf0ae 0b8d6b0 9bdf0ae 0b8d6b0 9bdf0ae 0b8d6b0 9bdf0ae 0b8d6b0 9bdf0ae 0b8d6b0 9bdf0ae 0b8d6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import torch
from PIL import Image
import imageio
from diffusers import StableVideoDiffusionPipeline
import gradio as gr
# Load the pipeline
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipe.enable_model_cpu_offload()
def generate_video(image, seed=42, fps=7):
# Resize the image
image = image.resize((1024, 576))
# Set the generator seed
generator = torch.manual_seed(seed)
# Generate the frames
frames = pipe(image, decode_chunk_size=8, generator=generator).frames[0]
# Export the frames to a video
output_path = "generated.mp4"
imageio.mimwrite(output_path, frames, fps=fps)
return output_path
# Create the Gradio interface
iface = gr.Interface(
fn=generate_video,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Number(label="Seed", value=42),
gr.Number(label="FPS", value=7)
],
outputs=gr.Video(label="Generated Video"),
title="Stable Video Diffusion",
description="Generate a video from an uploaded image using Stable Video Diffusion."
)
# Launch the interface
iface.launch()
|