Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
from diffusers import StableVideoDiffusionPipeline | |
from PIL import Image | |
import numpy as np | |
from moviepy.editor import ImageSequenceClip | |
# Load the pipeline | |
pipeline = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" | |
) | |
pipeline.enable_model_cpu_offload() | |
def generate_video(image, seed): | |
# Preprocess the image | |
image = Image.open(image) | |
image = image.resize((1024, 576)) | |
# Set the generator seed | |
generator = torch.manual_seed(seed) | |
# Generate the video frames | |
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0] | |
# Convert frames to a format suitable for video export | |
frames = [(frame * 255).astype(np.uint8) for frame in frames] | |
# Export the frames to a video file | |
clip = ImageSequenceClip(frames, fps=7) | |
output_video_path = "generated.mp4" | |
clip.write_videofile(output_video_path, codec="libx264") | |
return output_video_path | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Image(type="file", label="Upload Image"), | |
gr.Number(label="Seed", value=42) | |
], | |
outputs=gr.Video(label="Generated Video"), | |
title="Stable Video Diffusion", | |
description="Generate a video from an uploaded image using Stable Video Diffusion." | |
) | |
# Launch the interface | |
iface.launch() |