Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,31 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from diffusers import StableVideoDiffusionPipeline
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
9 |
# Load the pipeline
|
10 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
11 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
12 |
)
|
13 |
-
pipeline.
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
image = Image.open(image)
|
19 |
image = image.resize((1024, 576))
|
20 |
|
21 |
# Set the generator seed
|
22 |
-
generator = torch.manual_seed(seed)
|
23 |
|
24 |
# Generate the video frames
|
25 |
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
|
26 |
|
27 |
-
# Convert frames to a format suitable for video export
|
28 |
-
frames = [(frame * 255).astype(np.uint8) for frame in frames]
|
29 |
-
|
30 |
# Export the frames to a video file
|
31 |
-
clip = ImageSequenceClip(frames, fps=7)
|
32 |
output_video_path = "generated.mp4"
|
33 |
-
|
34 |
|
35 |
return output_video_path
|
36 |
|
@@ -38,7 +33,7 @@ def generate_video(image, seed):
|
|
38 |
iface = gr.Interface(
|
39 |
fn=generate_video,
|
40 |
inputs=[
|
41 |
-
gr.Image(type="
|
42 |
gr.Number(label="Seed", value=42)
|
43 |
],
|
44 |
outputs=gr.Video(label="Generated Video"),
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from diffusers import StableVideoDiffusionPipeline
|
4 |
+
from diffusers.utils import load_image, export_to_video
|
5 |
+
|
6 |
+
# Check if GPU is available
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
# Load the pipeline
|
10 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
11 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
12 |
)
|
13 |
+
pipeline.to(device)
|
14 |
|
15 |
+
def generate_video(image_path, seed):
|
16 |
+
# Load and preprocess the image
|
17 |
+
image = load_image(image_path)
|
|
|
18 |
image = image.resize((1024, 576))
|
19 |
|
20 |
# Set the generator seed
|
21 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
22 |
|
23 |
# Generate the video frames
|
24 |
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
|
25 |
|
|
|
|
|
|
|
26 |
# Export the frames to a video file
|
|
|
27 |
output_video_path = "generated.mp4"
|
28 |
+
export_to_video(frames, output_video_path, fps=7)
|
29 |
|
30 |
return output_video_path
|
31 |
|
|
|
33 |
iface = gr.Interface(
|
34 |
fn=generate_video,
|
35 |
inputs=[
|
36 |
+
gr.Image(type="filepath", label="Upload Image"),
|
37 |
gr.Number(label="Seed", value=42)
|
38 |
],
|
39 |
outputs=gr.Video(label="Generated Video"),
|