import torch import gradio as gr from diffusers import StableVideoDiffusionPipeline from PIL import Image import numpy as np from moviepy.editor import ImageSequenceClip # Load the pipeline pipeline = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" ) pipeline.enable_model_cpu_offload() def generate_video(image, seed): # Preprocess the image image = Image.open(image) image = image.resize((1024, 576)) # Set the generator seed generator = torch.manual_seed(seed) # Generate the video frames frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0] # Convert frames to a format suitable for video export frames = [(frame * 255).astype(np.uint8) for frame in frames] # Export the frames to a video file clip = ImageSequenceClip(frames, fps=7) output_video_path = "generated.mp4" clip.write_videofile(output_video_path, codec="libx264") return output_video_path # Create the Gradio interface iface = gr.Interface( fn=generate_video, inputs=[ gr.Image(type="file", label="Upload Image"), gr.Number(label="Seed", value=42) ], outputs=gr.Video(label="Generated Video"), title="Stable Video Diffusion", description="Generate a video from an uploaded image using Stable Video Diffusion." ) # Launch the interface iface.launch()