mrdbourke commited on
Commit
e5d7303
β€’
1 Parent(s): 31cd35c

Uploading food not food text classifier demo app.py

Browse files
Files changed (2) hide show
  1. README.md +2 -2
  2. app.py +1 -1
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: πŸ—πŸš«πŸ₯‘
4
  colorFrom: blue
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 4.39.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
@@ -16,4 +16,4 @@ Small demo to showcase a text classifier to determine if a sentence is about foo
16
 
17
  DistillBERT model fine-tuned on a small synthetic dataset of 250 generated [Food or Not Food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
18
 
19
- TK - see the demo notebook on how to create this
 
4
  colorFrom: blue
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 4.36.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
16
 
17
  DistillBERT model fine-tuned on a small synthetic dataset of 250 generated [Food or Not Food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
18
 
19
+ [Source code notebook](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
app.py CHANGED
@@ -30,7 +30,7 @@ A text classifier to determine if a sentence is about food or not food.
30
 
31
  Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
32
 
33
- TK - See source code:
34
  """
35
 
36
  demo = gr.Interface(fn=food_not_food_classifier,
 
30
 
31
  Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
32
 
33
+ See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
34
  """
35
 
36
  demo = gr.Interface(fn=food_not_food_classifier,