Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,517 Bytes
d63394d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import os,sys
from transformers import pipeline
import gradio as gr
import torch
import click
import torchaudio
from glob import glob
import librosa
import numpy as np
from scipy.io import wavfile
from tqdm import tqdm
import shutil
import time
import json
from datasets import Dataset
from model.utils import convert_char_to_pinyin
import signal
import psutil
import platform
import subprocess
from datasets.arrow_writer import ArrowWriter
from datasets import load_dataset, load_from_disk
import json
training_process = None
system = platform.system()
python_executable = sys.executable or "python"
path_data="data"
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
pipe = None
# Load metadata
def get_audio_duration(audio_path):
"""Calculate the duration of an audio file."""
audio, sample_rate = torchaudio.load(audio_path)
num_channels = audio.shape[0]
return audio.shape[1] / (sample_rate * num_channels)
def clear_text(text):
"""Clean and prepare text by lowering the case and stripping whitespace."""
return text.lower().strip()
def get_rms(y,frame_length=2048,hop_length=512,pad_mode="constant",): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
# put our new within-frame axis at the end for now
out_strides = y.strides + tuple([y.strides[axis]])
# Reduce the shape on the framing axis
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
# Downsample along the target axis
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
# Calculate power
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 2000,
min_interval: int = 300,
hop_size: int = 20,
max_sil_kept: int = 2000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError(
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
)
if not max_sil_kept >= hop_size:
raise ValueError(
"The following condition must be satisfied: max_sil_kept >= hop_size"
)
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
]
else:
return waveform[
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
]
# @timeit
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(
y=samples, frame_length=self.win_size, hop_length=self.hop_size
).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (
i - silence_start >= self.min_interval
and i - clip_start >= self.min_length
)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
].argmin()
pos += i - self.max_sil_kept
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if (
silence_start is not None
and total_frames - silence_start >= self.min_interval
):
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
####ι³ι’+θ΅·ε§ζΆι΄+η»ζ’ζΆι΄
if len(sil_tags) == 0:
return [[waveform,0,int(total_frames*self.hop_size)]]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]),0,int(sil_tags[0][0]*self.hop_size)])
for i in range(len(sil_tags) - 1):
chunks.append(
[self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),int(sil_tags[i][1]*self.hop_size),int(sil_tags[i + 1][0]*self.hop_size)]
)
if sil_tags[-1][1] < total_frames:
chunks.append(
[self._apply_slice(waveform, sil_tags[-1][1], total_frames),int(sil_tags[-1][1]*self.hop_size),int(total_frames*self.hop_size)]
)
return chunks
#terminal
def terminate_process_tree(pid, including_parent=True):
try:
parent = psutil.Process(pid)
except psutil.NoSuchProcess:
# Process already terminated
return
children = parent.children(recursive=True)
for child in children:
try:
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
if including_parent:
try:
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
def terminate_process(pid):
if system == "Windows":
cmd = f"taskkill /t /f /pid {pid}"
os.system(cmd)
else:
terminate_process_tree(pid)
def start_training(dataset_name="",
exp_name="F5TTS_Base",
learning_rate=1e-4,
batch_size_per_gpu=400,
batch_size_type="frame",
max_samples=64,
grad_accumulation_steps=1,
max_grad_norm=1.0,
epochs=11,
num_warmup_updates=200,
save_per_updates=400,
last_per_steps=800,
finetune=True,
):
global training_process
# Check if a training process is already running
if training_process is not None:
return "Train run already!",gr.update(interactive=False),gr.update(interactive=True)
yield "start train",gr.update(interactive=False),gr.update(interactive=False)
# Command to run the training script with the specified arguments
cmd = f"{python_executable} finetune-cli.py --exp_name {exp_name} " \
f"--learning_rate {learning_rate} " \
f"--batch_size_per_gpu {batch_size_per_gpu} " \
f"--batch_size_type {batch_size_type} " \
f"--max_samples {max_samples} " \
f"--grad_accumulation_steps {grad_accumulation_steps} " \
f"--max_grad_norm {max_grad_norm} " \
f"--epochs {epochs} " \
f"--num_warmup_updates {num_warmup_updates} " \
f"--save_per_updates {save_per_updates} " \
f"--last_per_steps {last_per_steps} " \
f"--dataset_name {dataset_name}"
if finetune:cmd += f" --finetune {finetune}"
print(cmd)
try:
# Start the training process
training_process = subprocess.Popen(cmd, shell=True)
time.sleep(5)
yield "check terminal for wandb",gr.update(interactive=False),gr.update(interactive=True)
# Wait for the training process to finish
training_process.wait()
time.sleep(1)
if training_process is None:
text_info = 'train stop'
else:
text_info = "train complete !"
except Exception as e: # Catch all exceptions
# Ensure that we reset the training process variable in case of an error
text_info=f"An error occurred: {str(e)}"
training_process=None
yield text_info,gr.update(interactive=True),gr.update(interactive=False)
def stop_training():
global training_process
if training_process is None:return f"Train not run !",gr.update(interactive=True),gr.update(interactive=False)
terminate_process_tree(training_process.pid)
training_process = None
return 'train stop',gr.update(interactive=True),gr.update(interactive=False)
def create_data_project(name):
name+="_pinyin"
os.makedirs(os.path.join(path_data,name),exist_ok=True)
os.makedirs(os.path.join(path_data,name,"dataset"),exist_ok=True)
def transcribe(file_audio,language="english"):
global pipe
if pipe is None:
pipe = pipeline("automatic-speech-recognition",model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16,device=device)
text_transcribe = pipe(
file_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe","language": language},
return_timestamps=False,
)["text"].strip()
return text_transcribe
def transcribe_all(name_project,audio_file,language,user=False,progress=gr.Progress()):
name_project+="_pinyin"
path_project= os.path.join(path_data,name_project)
path_dataset = os.path.join(path_project,"dataset")
path_project_wavs = os.path.join(path_project,"wavs")
file_metadata = os.path.join(path_project,"metadata.csv")
if os.path.isdir(path_project_wavs):
shutil.rmtree(path_project_wavs)
if os.path.isfile(file_metadata):
os.remove(file_metadata)
os.makedirs(path_project_wavs,exist_ok=True)
if user:
file_audios = [file for format in ('*.wav', '*.ogg', '*.opus', '*.mp3', '*.flac') for file in glob(os.path.join(path_dataset, format))]
else:
file_audios = [audio_file]
print([file_audios])
alpha = 0.5
_max = 1.0
slicer = Slicer(24000)
num = 0
data=""
for file_audio in progress.tqdm(file_audios, desc="transcribe files",total=len((file_audios))):
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
list_slicer=slicer.slice(audio)
for chunk, start, end in progress.tqdm(list_slicer,total=len(list_slicer), desc="slicer files"):
name_segment = os.path.join(f"segment_{num}")
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
tmp_max = np.abs(chunk).max()
if(tmp_max>1):chunk/=tmp_max
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
wavfile.write(file_segment,24000, (chunk * 32767).astype(np.int16))
text=transcribe(file_segment,language)
text = text.lower().strip().replace('"',"")
data+= f"{name_segment}|{text}\n"
num+=1
with open(file_metadata,"w",encoding="utf-8") as f:
f.write(data)
return f"transcribe complete samples : {num} in path {path_project_wavs}"
def format_seconds_to_hms(seconds):
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
seconds = seconds % 60
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
def create_metadata(name_project,progress=gr.Progress()):
name_project+="_pinyin"
path_project= os.path.join(path_data,name_project)
path_project_wavs = os.path.join(path_project,"wavs")
file_metadata = os.path.join(path_project,"metadata.csv")
file_raw = os.path.join(path_project,"raw.arrow")
file_duration = os.path.join(path_project,"duration.json")
file_vocab = os.path.join(path_project,"vocab.txt")
with open(file_metadata,"r",encoding="utf-8") as f:
data=f.read()
audio_path_list=[]
text_list=[]
duration_list=[]
count=data.split("\n")
lenght=0
result=[]
for line in progress.tqdm(data.split("\n"),total=count):
sp_line=line.split("|")
if len(sp_line)!=2:continue
name_audio,text = sp_line[:2]
file_audio = os.path.join(path_project_wavs, name_audio + ".wav")
duraction = get_audio_duration(file_audio)
if duraction<2 and duraction>15:continue
if len(text)<4:continue
text = clear_text(text)
text = convert_char_to_pinyin([text], polyphone = True)[0]
audio_path_list.append(file_audio)
duration_list.append(duraction)
text_list.append(text)
result.append({"audio_path": file_audio, "text": text, "duration": duraction})
lenght+=duraction
min_second = round(min(duration_list),2)
max_second = round(max(duration_list),2)
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
for line in progress.tqdm(result,total=len(result), desc=f"prepare data"):
writer.write(line)
with open(file_duration, 'w', encoding='utf-8') as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
shutil.copy2(file_vocab_finetune, file_vocab)
return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n"
def check_user(value):
return gr.update(visible=not value),gr.update(visible=value)
def calculate_train(name_project,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,finetune):
name_project+="_pinyin"
path_project= os.path.join(path_data,name_project)
file_duraction = os.path.join(path_project,"duration.json")
with open(file_duraction, 'r') as file:
data = json.load(file)
duration_list = data['duration']
samples = len(duration_list)
gpu_properties = torch.cuda.get_device_properties(0)
total_memory = gpu_properties.total_memory / (1024 ** 3)
if batch_size_type=="frame":
batch = int(total_memory * 0.5)
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
batch_size_per_gpu = int(36800 / batch )
else:
batch_size_per_gpu = int(total_memory / 8)
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
batch = batch_size_per_gpu
if batch_size_per_gpu<=0:batch_size_per_gpu=1
if samples<64:
max_samples = int(samples * 0.25)
num_warmup_updates = int(samples * 0.10)
save_per_updates = int(samples * 0.25)
last_per_steps =int(save_per_updates * 5)
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
if finetune:learning_rate=1e-4
else:learning_rate=7.5e-5
return batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,samples,learning_rate
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None:
try:
checkpoint = torch.load(checkpoint_path)
print("Original Checkpoint Keys:", checkpoint.keys())
ema_model_state_dict = checkpoint.get('ema_model_state_dict', None)
if ema_model_state_dict is not None:
new_checkpoint = {'ema_model_state_dict': ema_model_state_dict}
torch.save(new_checkpoint, new_checkpoint_path)
print(f"New checkpoint saved at: {new_checkpoint_path}")
else:
print("No 'ema_model_state_dict' found in the checkpoint.")
except Exception as e:
print(f"An error occurred: {e}")
def vocab_check(project_name):
name_project = project_name + "_pinyin"
path_project = os.path.join(path_data, name_project)
file_metadata = os.path.join(path_project, "metadata.csv")
file_vocab="data/Emilia_ZH_EN_pinyin/vocab.txt"
with open(file_vocab,"r",encoding="utf-8") as f:
data=f.read()
vocab = data.split("\n")
with open(file_metadata,"r",encoding="utf-8") as f:
data=f.read()
miss_symbols=[]
miss_symbols_keep={}
for item in data.split("\n"):
sp=item.split("|")
if len(sp)!=2:continue
text=sp[1].lower().strip()
for t in text:
if (t in vocab)==False and (t in miss_symbols_keep)==False:
miss_symbols.append(t)
miss_symbols_keep[t]=t
if miss_symbols==[]:info ="You can train using your language !"
else:info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)
return info
with gr.Blocks() as app:
with gr.Row():
project_name=gr.Textbox(label="project name",value="my_speak")
bt_create=gr.Button("create new project")
bt_create.click(fn=create_data_project,inputs=[project_name])
with gr.Tabs():
with gr.TabItem("transcribe Data"):
ch_manual = gr.Checkbox(label="user",value=False)
mark_info_transcribe=gr.Markdown(
"""```plaintext
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
my_speak/
β
βββ dataset/
βββ audio1.wav
βββ audio2.wav
...
```""",visible=False)
audio_speaker = gr.Audio(label="voice",type="filepath")
txt_lang = gr.Text(label="Language",value="english")
bt_transcribe=bt_create=gr.Button("transcribe")
txt_info_transcribe=gr.Text(label="info",value="")
bt_transcribe.click(fn=transcribe_all,inputs=[project_name,audio_speaker,txt_lang,ch_manual],outputs=[txt_info_transcribe])
ch_manual.change(fn=check_user,inputs=[ch_manual],outputs=[audio_speaker,mark_info_transcribe])
with gr.TabItem("prepare Data"):
gr.Markdown(
"""```plaintext
place all your wavs folder and your metadata.csv file in {your name project}
my_speak/
β
βββ wavs/
β βββ audio1.wav
β βββ audio2.wav
| ...
β
βββ metadata.csv
file format metadata.csv
audio1|text1
audio2|text1
...
```""")
bt_prepare=bt_create=gr.Button("prepare")
txt_info_prepare=gr.Text(label="info",value="")
bt_prepare.click(fn=create_metadata,inputs=[project_name],outputs=[txt_info_prepare])
with gr.TabItem("train Data"):
with gr.Row():
bt_calculate=bt_create=gr.Button("Auto Settings")
ch_finetune=bt_create=gr.Checkbox(label="finetune",value=True)
lb_samples = gr.Label(label="samples")
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
with gr.Row():
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
learning_rate = gr.Number(label="Learning Rate", value=1e-4, step=1e-4)
with gr.Row():
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
max_samples = gr.Number(label="Max Samples", value=16)
with gr.Row():
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
with gr.Row():
epochs = gr.Number(label="Epochs", value=10)
num_warmup_updates = gr.Number(label="Warmup Updates", value=5)
with gr.Row():
save_per_updates = gr.Number(label="Save per Updates", value=10)
last_per_steps = gr.Number(label="Last per Steps", value=50)
with gr.Row():
start_button = gr.Button("Start Training")
stop_button = gr.Button("Stop Training",interactive=False)
txt_info_train=gr.Text(label="info",value="")
start_button.click(fn=start_training,inputs=[project_name,exp_name,learning_rate,batch_size_per_gpu,batch_size_type,max_samples,grad_accumulation_steps,max_grad_norm,epochs,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[txt_info_train,start_button,stop_button])
stop_button.click(fn=stop_training,outputs=[txt_info_train,start_button,stop_button])
bt_calculate.click(fn=calculate_train,inputs=[project_name,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,lb_samples,learning_rate])
with gr.TabItem("reduse checkpoint"):
txt_path_checkpoint = gr.Text(label="path checkpoint :")
txt_path_checkpoint_small = gr.Text(label="path output :")
reduse_button = gr.Button("reduse")
reduse_button.click(fn=extract_and_save_ema_model,inputs=[txt_path_checkpoint,txt_path_checkpoint_small])
with gr.TabItem("vocab check experiment"):
check_button = gr.Button("check vocab")
txt_info_check=gr.Text(label="info",value="")
check_button.click(fn=vocab_check,inputs=[project_name],outputs=[txt_info_check])
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
global app
print(f"Starting app...")
app.queue(api_open=api).launch(
server_name=host, server_port=port, share=share, show_api=api
)
if __name__ == "__main__":
name="my_speak"
#create_data_project(name)
#transcribe_all(name)
#create_metadata(name)
main() |