File size: 7,341 Bytes
4dab15f
fededd1
4dab15f
 
 
 
fededd1
4dab15f
 
 
 
 
43bc5dc
1a19e0f
fededd1
4dab15f
 
 
fededd1
 
4dab15f
fededd1
43bc5dc
fededd1
4dab15f
 
 
 
 
1a19e0f
4dab15f
 
1a19e0f
4dab15f
 
 
 
 
 
 
 
1a19e0f
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a19e0f
43bc5dc
1a19e0f
4dab15f
1a19e0f
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
 
 
 
fededd1
 
 
 
 
4dab15f
 
 
 
 
 
1a19e0f
4dab15f
fededd1
4dab15f
fededd1
 
 
 
4dab15f
 
 
 
 
 
 
1a19e0f
 
 
 
fededd1
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
 
 
b4fc33b
fededd1
57b3db8
fededd1
57b3db8
fededd1
 
 
57b3db8
4dab15f
 
 
 
43bc5dc
4dab15f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import sys

sys.path.append(os.getcwd())

import argparse
import time
from importlib.resources import files

import torch
import torchaudio
from accelerate import Accelerator
from hydra.utils import get_class
from omegaconf import OmegaConf
from tqdm import tqdm

from f5_tts.eval.utils_eval import (
    get_inference_prompt,
    get_librispeech_test_clean_metainfo,
    get_seedtts_testset_metainfo,
)
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
from f5_tts.model import CFM
from f5_tts.model.utils import get_tokenizer

accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"


use_ema = True
target_rms = 0.1


rel_path = str(files("f5_tts").joinpath("../../"))


def main():
    parser = argparse.ArgumentParser(description="batch inference")

    parser.add_argument("-s", "--seed", default=None, type=int)
    parser.add_argument("-n", "--expname", required=True)
    parser.add_argument("-c", "--ckptstep", default=1250000, type=int)

    parser.add_argument("-nfe", "--nfestep", default=32, type=int)
    parser.add_argument("-o", "--odemethod", default="euler")
    parser.add_argument("-ss", "--swaysampling", default=-1, type=float)

    parser.add_argument("-t", "--testset", required=True)

    args = parser.parse_args()

    seed = args.seed
    exp_name = args.expname
    ckpt_step = args.ckptstep

    nfe_step = args.nfestep
    ode_method = args.odemethod
    sway_sampling_coef = args.swaysampling

    testset = args.testset

    infer_batch_size = 1  # max frames. 1 for ddp single inference (recommended)
    cfg_strength = 2.0
    speed = 1.0
    use_truth_duration = False
    no_ref_audio = False

    model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
    model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
    model_arc = model_cfg.model.arch

    dataset_name = model_cfg.datasets.name
    tokenizer = model_cfg.model.tokenizer

    mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
    target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
    n_mel_channels = model_cfg.model.mel_spec.n_mel_channels
    hop_length = model_cfg.model.mel_spec.hop_length
    win_length = model_cfg.model.mel_spec.win_length
    n_fft = model_cfg.model.mel_spec.n_fft

    if testset == "ls_pc_test_clean":
        metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
        librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean"  # test-clean path
        metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)

    elif testset == "seedtts_test_zh":
        metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
        metainfo = get_seedtts_testset_metainfo(metalst)

    elif testset == "seedtts_test_en":
        metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
        metainfo = get_seedtts_testset_metainfo(metalst)

    # path to save genereted wavs
    output_dir = (
        f"{rel_path}/"
        f"results/{exp_name}_{ckpt_step}/{testset}/"
        f"seed{seed}_{ode_method}_nfe{nfe_step}_{mel_spec_type}"
        f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
        f"_cfg{cfg_strength}_speed{speed}"
        f"{'_gt-dur' if use_truth_duration else ''}"
        f"{'_no-ref-audio' if no_ref_audio else ''}"
    )

    # -------------------------------------------------#

    prompts_all = get_inference_prompt(
        metainfo,
        speed=speed,
        tokenizer=tokenizer,
        target_sample_rate=target_sample_rate,
        n_mel_channels=n_mel_channels,
        hop_length=hop_length,
        mel_spec_type=mel_spec_type,
        target_rms=target_rms,
        use_truth_duration=use_truth_duration,
        infer_batch_size=infer_batch_size,
    )

    # Vocoder model
    local = False
    if mel_spec_type == "vocos":
        vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
    elif mel_spec_type == "bigvgan":
        vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
    vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)

    # Tokenizer
    vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)

    # Model
    model = CFM(
        transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
        mel_spec_kwargs=dict(
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            n_mel_channels=n_mel_channels,
            target_sample_rate=target_sample_rate,
            mel_spec_type=mel_spec_type,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)

    ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
    if not os.path.exists(ckpt_path):
        print("Loading from self-organized training checkpoints rather than released pretrained.")
        ckpt_path = rel_path + f"/{model_cfg.ckpts.save_dir}/model_{ckpt_step}.pt"
    dtype = torch.float32 if mel_spec_type == "bigvgan" else None
    model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)

    if not os.path.exists(output_dir) and accelerator.is_main_process:
        os.makedirs(output_dir)

    # start batch inference
    accelerator.wait_for_everyone()
    start = time.time()

    with accelerator.split_between_processes(prompts_all) as prompts:
        for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
            utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
            ref_mels = ref_mels.to(device)
            ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
            total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)

            # Inference
            with torch.inference_mode():
                generated, _ = model.sample(
                    cond=ref_mels,
                    text=final_text_list,
                    duration=total_mel_lens,
                    lens=ref_mel_lens,
                    steps=nfe_step,
                    cfg_strength=cfg_strength,
                    sway_sampling_coef=sway_sampling_coef,
                    no_ref_audio=no_ref_audio,
                    seed=seed,
                )
                # Final result
                for i, gen in enumerate(generated):
                    gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
                    gen_mel_spec = gen.permute(0, 2, 1).to(torch.float32)
                    if mel_spec_type == "vocos":
                        generated_wave = vocoder.decode(gen_mel_spec).cpu()
                    elif mel_spec_type == "bigvgan":
                        generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()

                    if ref_rms_list[i] < target_rms:
                        generated_wave = generated_wave * ref_rms_list[i] / target_rms
                    torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)

    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        timediff = time.time() - start
        print(f"Done batch inference in {timediff / 60:.2f} minutes.")


if __name__ == "__main__":
    main()