Spaces:
Running
on
Zero
Running
on
Zero
# A unified script for inference process | |
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format | |
import os | |
import sys | |
sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/") | |
import hashlib | |
import re | |
import tempfile | |
from importlib.resources import files | |
import matplotlib | |
matplotlib.use("Agg") | |
import matplotlib.pylab as plt | |
import numpy as np | |
import torch | |
import torchaudio | |
import tqdm | |
from pydub import AudioSegment, silence | |
from transformers import pipeline | |
from vocos import Vocos | |
from f5_tts.model import CFM | |
from f5_tts.model.utils import ( | |
get_tokenizer, | |
convert_char_to_pinyin, | |
) | |
_ref_audio_cache = {} | |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
if device == "mps": | |
os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" | |
# ----------------------------------------- | |
target_sample_rate = 24000 | |
n_mel_channels = 100 | |
hop_length = 256 | |
win_length = 1024 | |
n_fft = 1024 | |
mel_spec_type = "vocos" | |
target_rms = 0.1 | |
cross_fade_duration = 0.15 | |
ode_method = "euler" | |
nfe_step = 32 # 16, 32 | |
cfg_strength = 2.0 | |
sway_sampling_coef = -1.0 | |
speed = 1.0 | |
fix_duration = None | |
# ----------------------------------------- | |
# chunk text into smaller pieces | |
def chunk_text(text, max_chars=135): | |
""" | |
Splits the input text into chunks, each with a maximum number of characters. | |
Args: | |
text (str): The text to be split. | |
max_chars (int): The maximum number of characters per chunk. | |
Returns: | |
List[str]: A list of text chunks. | |
""" | |
chunks = [] | |
current_chunk = "" | |
# Split the text into sentences based on punctuation followed by whitespace | |
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text) | |
for sentence in sentences: | |
if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars: | |
current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence | |
else: | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
# load vocoder | |
def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device): | |
if vocoder_name == "vocos": | |
if is_local: | |
print(f"Load vocos from local path {local_path}") | |
vocoder = Vocos.from_hparams(f"{local_path}/config.yaml") | |
state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location="cpu") | |
vocoder.load_state_dict(state_dict) | |
vocoder = vocoder.eval().to(device) | |
else: | |
print("Download Vocos from huggingface charactr/vocos-mel-24khz") | |
vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device) | |
elif vocoder_name == "bigvgan": | |
try: | |
from third_party.BigVGAN import bigvgan | |
except ImportError: | |
print("You need to follow the README to init submodule and change the BigVGAN source code.") | |
if is_local: | |
"""download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main""" | |
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False) | |
else: | |
vocoder = bigvgan.BigVGAN.from_pretrained("nvidia/bigvgan_v2_24khz_100band_256x", use_cuda_kernel=False) | |
vocoder.remove_weight_norm() | |
vocoder = vocoder.eval().to(device) | |
return vocoder | |
# load asr pipeline | |
asr_pipe = None | |
def initialize_asr_pipeline(device=device, dtype=None): | |
if dtype is None: | |
dtype = ( | |
torch.float16 if device == "cuda" and torch.cuda.get_device_properties(device).major >= 6 else torch.float32 | |
) | |
global asr_pipe | |
asr_pipe = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-large-v3-turbo", | |
torch_dtype=dtype, | |
device=device, | |
) | |
# load model checkpoint for inference | |
def load_checkpoint(model, ckpt_path, device, dtype=None, use_ema=True): | |
if dtype is None: | |
dtype = ( | |
torch.float16 if device == "cuda" and torch.cuda.get_device_properties(device).major >= 6 else torch.float32 | |
) | |
model = model.to(dtype) | |
ckpt_type = ckpt_path.split(".")[-1] | |
if ckpt_type == "safetensors": | |
from safetensors.torch import load_file | |
checkpoint = load_file(ckpt_path) | |
else: | |
checkpoint = torch.load(ckpt_path, weights_only=True) | |
if use_ema: | |
if ckpt_type == "safetensors": | |
checkpoint = {"ema_model_state_dict": checkpoint} | |
checkpoint["model_state_dict"] = { | |
k.replace("ema_model.", ""): v | |
for k, v in checkpoint["ema_model_state_dict"].items() | |
if k not in ["initted", "step"] | |
} | |
# patch for backward compatibility, 305e3ea | |
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]: | |
if key in checkpoint["model_state_dict"]: | |
del checkpoint["model_state_dict"][key] | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
else: | |
if ckpt_type == "safetensors": | |
checkpoint = {"model_state_dict": checkpoint} | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
return model.to(device) | |
# load model for inference | |
def load_model( | |
model_cls, | |
model_cfg, | |
ckpt_path, | |
mel_spec_type=mel_spec_type, | |
vocab_file="", | |
ode_method=ode_method, | |
use_ema=True, | |
device=device, | |
): | |
if vocab_file == "": | |
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt")) | |
tokenizer = "custom" | |
print("\nvocab : ", vocab_file) | |
print("tokenizer : ", tokenizer) | |
print("model : ", ckpt_path, "\n") | |
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer) | |
model = CFM( | |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), | |
mel_spec_kwargs=dict( | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
n_mel_channels=n_mel_channels, | |
target_sample_rate=target_sample_rate, | |
mel_spec_type=mel_spec_type, | |
), | |
odeint_kwargs=dict( | |
method=ode_method, | |
), | |
vocab_char_map=vocab_char_map, | |
).to(device) | |
dtype = torch.float32 if mel_spec_type == "bigvgan" else None | |
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema) | |
return model | |
def remove_silence_edges(audio, silence_threshold=-42): | |
# Remove silence from the start | |
non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold) | |
audio = audio[non_silent_start_idx:] | |
# Remove silence from the end | |
non_silent_end_duration = audio.duration_seconds | |
for ms in reversed(audio): | |
if ms.dBFS > silence_threshold: | |
break | |
non_silent_end_duration -= 0.001 | |
trimmed_audio = audio[: int(non_silent_end_duration * 1000)] | |
return trimmed_audio | |
# preprocess reference audio and text | |
def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device): | |
show_info("Converting audio...") | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
aseg = AudioSegment.from_file(ref_audio_orig) | |
if clip_short: | |
# 1. try to find long silence for clipping | |
non_silent_segs = silence.split_on_silence( | |
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10 | |
) | |
non_silent_wave = AudioSegment.silent(duration=0) | |
for non_silent_seg in non_silent_segs: | |
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000: | |
show_info("Audio is over 15s, clipping short. (1)") | |
break | |
non_silent_wave += non_silent_seg | |
# 2. try to find short silence for clipping if 1. failed | |
if len(non_silent_wave) > 15000: | |
non_silent_segs = silence.split_on_silence( | |
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10 | |
) | |
non_silent_wave = AudioSegment.silent(duration=0) | |
for non_silent_seg in non_silent_segs: | |
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000: | |
show_info("Audio is over 15s, clipping short. (2)") | |
break | |
non_silent_wave += non_silent_seg | |
aseg = non_silent_wave | |
# 3. if no proper silence found for clipping | |
if len(aseg) > 15000: | |
aseg = aseg[:15000] | |
show_info("Audio is over 15s, clipping short. (3)") | |
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50) | |
aseg.export(f.name, format="wav") | |
ref_audio = f.name | |
# Compute a hash of the reference audio file | |
with open(ref_audio, "rb") as audio_file: | |
audio_data = audio_file.read() | |
audio_hash = hashlib.md5(audio_data).hexdigest() | |
if not ref_text.strip(): | |
global _ref_audio_cache | |
if audio_hash in _ref_audio_cache: | |
# Use cached asr transcription | |
show_info("Using cached reference text...") | |
ref_text = _ref_audio_cache[audio_hash] | |
else: | |
global asr_pipe | |
if asr_pipe is None: | |
initialize_asr_pipeline(device=device) | |
show_info("No reference text provided, transcribing reference audio...") | |
ref_text = asr_pipe( | |
ref_audio, | |
chunk_length_s=30, | |
batch_size=128, | |
generate_kwargs={"task": "transcribe"}, | |
return_timestamps=False, | |
)["text"].strip() | |
# Cache the transcribed text (not caching custom ref_text, enabling users to do manual tweak) | |
_ref_audio_cache[audio_hash] = ref_text | |
else: | |
show_info("Using custom reference text...") | |
# Ensure ref_text ends with a proper sentence-ending punctuation | |
if not ref_text.endswith(". ") and not ref_text.endswith("。"): | |
if ref_text.endswith("."): | |
ref_text += " " | |
else: | |
ref_text += ". " | |
print("ref_text ", ref_text) | |
return ref_audio, ref_text | |
# infer process: chunk text -> infer batches [i.e. infer_batch_process()] | |
def infer_process( | |
ref_audio, | |
ref_text, | |
gen_text, | |
model_obj, | |
vocoder, | |
mel_spec_type=mel_spec_type, | |
show_info=print, | |
progress=tqdm, | |
target_rms=target_rms, | |
cross_fade_duration=cross_fade_duration, | |
nfe_step=nfe_step, | |
cfg_strength=cfg_strength, | |
sway_sampling_coef=sway_sampling_coef, | |
speed=speed, | |
fix_duration=fix_duration, | |
device=device, | |
): | |
# Split the input text into batches | |
audio, sr = torchaudio.load(ref_audio) | |
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) | |
gen_text_batches = chunk_text(gen_text, max_chars=max_chars) | |
for i, gen_text in enumerate(gen_text_batches): | |
print(f"gen_text {i}", gen_text) | |
show_info(f"Generating audio in {len(gen_text_batches)} batches...") | |
return infer_batch_process( | |
(audio, sr), | |
ref_text, | |
gen_text_batches, | |
model_obj, | |
vocoder, | |
mel_spec_type=mel_spec_type, | |
progress=progress, | |
target_rms=target_rms, | |
cross_fade_duration=cross_fade_duration, | |
nfe_step=nfe_step, | |
cfg_strength=cfg_strength, | |
sway_sampling_coef=sway_sampling_coef, | |
speed=speed, | |
fix_duration=fix_duration, | |
device=device, | |
) | |
# infer batches | |
def infer_batch_process( | |
ref_audio, | |
ref_text, | |
gen_text_batches, | |
model_obj, | |
vocoder, | |
mel_spec_type="vocos", | |
progress=tqdm, | |
target_rms=0.1, | |
cross_fade_duration=0.15, | |
nfe_step=32, | |
cfg_strength=2.0, | |
sway_sampling_coef=-1, | |
speed=1, | |
fix_duration=None, | |
device=None, | |
): | |
audio, sr = ref_audio | |
if audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
rms = torch.sqrt(torch.mean(torch.square(audio))) | |
if rms < target_rms: | |
audio = audio * target_rms / rms | |
if sr != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(sr, target_sample_rate) | |
audio = resampler(audio) | |
audio = audio.to(device) | |
generated_waves = [] | |
spectrograms = [] | |
if len(ref_text[-1].encode("utf-8")) == 1: | |
ref_text = ref_text + " " | |
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)): | |
# Prepare the text | |
text_list = [ref_text + gen_text] | |
final_text_list = convert_char_to_pinyin(text_list) | |
ref_audio_len = audio.shape[-1] // hop_length | |
if fix_duration is not None: | |
duration = int(fix_duration * target_sample_rate / hop_length) | |
else: | |
# Calculate duration | |
ref_text_len = len(ref_text.encode("utf-8")) | |
gen_text_len = len(gen_text.encode("utf-8")) | |
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) | |
# inference | |
with torch.inference_mode(): | |
generated, _ = model_obj.sample( | |
cond=audio, | |
text=final_text_list, | |
duration=duration, | |
steps=nfe_step, | |
cfg_strength=cfg_strength, | |
sway_sampling_coef=sway_sampling_coef, | |
) | |
generated = generated.to(torch.float32) | |
generated = generated[:, ref_audio_len:, :] | |
generated_mel_spec = generated.permute(0, 2, 1) | |
if mel_spec_type == "vocos": | |
generated_wave = vocoder.decode(generated_mel_spec) | |
elif mel_spec_type == "bigvgan": | |
generated_wave = vocoder(generated_mel_spec) | |
if rms < target_rms: | |
generated_wave = generated_wave * rms / target_rms | |
# wav -> numpy | |
generated_wave = generated_wave.squeeze().cpu().numpy() | |
generated_waves.append(generated_wave) | |
spectrograms.append(generated_mel_spec[0].cpu().numpy()) | |
# Combine all generated waves with cross-fading | |
if cross_fade_duration <= 0: | |
# Simply concatenate | |
final_wave = np.concatenate(generated_waves) | |
else: | |
final_wave = generated_waves[0] | |
for i in range(1, len(generated_waves)): | |
prev_wave = final_wave | |
next_wave = generated_waves[i] | |
# Calculate cross-fade samples, ensuring it does not exceed wave lengths | |
cross_fade_samples = int(cross_fade_duration * target_sample_rate) | |
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) | |
if cross_fade_samples <= 0: | |
# No overlap possible, concatenate | |
final_wave = np.concatenate([prev_wave, next_wave]) | |
continue | |
# Overlapping parts | |
prev_overlap = prev_wave[-cross_fade_samples:] | |
next_overlap = next_wave[:cross_fade_samples] | |
# Fade out and fade in | |
fade_out = np.linspace(1, 0, cross_fade_samples) | |
fade_in = np.linspace(0, 1, cross_fade_samples) | |
# Cross-faded overlap | |
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in | |
# Combine | |
new_wave = np.concatenate( | |
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]] | |
) | |
final_wave = new_wave | |
# Create a combined spectrogram | |
combined_spectrogram = np.concatenate(spectrograms, axis=1) | |
return final_wave, target_sample_rate, combined_spectrogram | |
# remove silence from generated wav | |
def remove_silence_for_generated_wav(filename): | |
aseg = AudioSegment.from_file(filename) | |
non_silent_segs = silence.split_on_silence( | |
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500, seek_step=10 | |
) | |
non_silent_wave = AudioSegment.silent(duration=0) | |
for non_silent_seg in non_silent_segs: | |
non_silent_wave += non_silent_seg | |
aseg = non_silent_wave | |
aseg.export(filename, format="wav") | |
# save spectrogram | |
def save_spectrogram(spectrogram, path): | |
plt.figure(figsize=(12, 4)) | |
plt.imshow(spectrogram, origin="lower", aspect="auto") | |
plt.colorbar() | |
plt.savefig(path) | |
plt.close() | |