Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import os | |
import re | |
import math | |
import random | |
import string | |
from tqdm import tqdm | |
from collections import defaultdict | |
import matplotlib | |
matplotlib.use("Agg") | |
import matplotlib.pylab as plt | |
import torch | |
import torch.nn.functional as F | |
from torch.nn.utils.rnn import pad_sequence | |
import torchaudio | |
import einx | |
from einops import rearrange, reduce | |
import jieba | |
from pypinyin import lazy_pinyin, Style | |
import zhconv | |
from zhon.hanzi import punctuation | |
from jiwer import compute_measures | |
from funasr import AutoModel | |
from faster_whisper import WhisperModel | |
from model.ecapa_tdnn import ECAPA_TDNN_SMALL | |
from model.modules import MelSpec | |
# seed everything | |
def seed_everything(seed = 0): | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
# helpers | |
def exists(v): | |
return v is not None | |
def default(v, d): | |
return v if exists(v) else d | |
# tensor helpers | |
def lens_to_mask( | |
t: int['b'], | |
length: int | None = None | |
) -> bool['b n']: | |
if not exists(length): | |
length = t.amax() | |
seq = torch.arange(length, device = t.device) | |
return einx.less('n, b -> b n', seq, t) | |
def mask_from_start_end_indices( | |
seq_len: int['b'], | |
start: int['b'], | |
end: int['b'] | |
): | |
max_seq_len = seq_len.max().item() | |
seq = torch.arange(max_seq_len, device = start.device).long() | |
return einx.greater_equal('n, b -> b n', seq, start) & einx.less('n, b -> b n', seq, end) | |
def mask_from_frac_lengths( | |
seq_len: int['b'], | |
frac_lengths: float['b'] | |
): | |
lengths = (frac_lengths * seq_len).long() | |
max_start = seq_len - lengths | |
rand = torch.rand_like(frac_lengths) | |
start = (max_start * rand).long().clamp(min = 0) | |
end = start + lengths | |
return mask_from_start_end_indices(seq_len, start, end) | |
def maybe_masked_mean( | |
t: float['b n d'], | |
mask: bool['b n'] = None | |
) -> float['b d']: | |
if not exists(mask): | |
return t.mean(dim = 1) | |
t = einx.where('b n, b n d, -> b n d', mask, t, 0.) | |
num = reduce(t, 'b n d -> b d', 'sum') | |
den = reduce(mask.float(), 'b n -> b', 'sum') | |
return einx.divide('b d, b -> b d', num, den.clamp(min = 1.)) | |
# simple utf-8 tokenizer, since paper went character based | |
def list_str_to_tensor( | |
text: list[str], | |
padding_value = -1 | |
) -> int['b nt']: | |
list_tensors = [torch.tensor([*bytes(t, 'UTF-8')]) for t in text] # ByT5 style | |
text = pad_sequence(list_tensors, padding_value = padding_value, batch_first = True) | |
return text | |
# char tokenizer, based on custom dataset's extracted .txt file | |
def list_str_to_idx( | |
text: list[str] | list[list[str]], | |
vocab_char_map: dict[str, int], # {char: idx} | |
padding_value = -1 | |
) -> int['b nt']: | |
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style | |
text = pad_sequence(list_idx_tensors, padding_value = padding_value, batch_first = True) | |
return text | |
# Get tokenizer | |
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): | |
''' | |
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file | |
- "char" for char-wise tokenizer, need .txt vocab_file | |
- "byte" for utf-8 tokenizer | |
- "custom" if you're directly passing in a path to the vocab.txt you want to use | |
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols | |
- if use "char", derived from unfiltered character & symbol counts of custom dataset | |
- if use "byte", set to 256 (unicode byte range) | |
''' | |
if tokenizer in ["pinyin", "char"]: | |
with open (f"data/{dataset_name}_{tokenizer}/vocab.txt", "r", encoding="utf-8") as f: | |
vocab_char_map = {} | |
for i, char in enumerate(f): | |
vocab_char_map[char[:-1]] = i | |
vocab_size = len(vocab_char_map) | |
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" | |
elif tokenizer == "byte": | |
vocab_char_map = None | |
vocab_size = 256 | |
elif tokenizer == "custom": | |
with open (dataset_name, "r", encoding="utf-8") as f: | |
vocab_char_map = {} | |
for i, char in enumerate(f): | |
vocab_char_map[char[:-1]] = i | |
vocab_size = len(vocab_char_map) | |
return vocab_char_map, vocab_size | |
# convert char to pinyin | |
def convert_char_to_pinyin(text_list, polyphone = True): | |
final_text_list = [] | |
god_knows_why_en_testset_contains_zh_quote = str.maketrans({'“': '"', '”': '"', '‘': "'", '’': "'"}) # in case librispeech (orig no-pc) test-clean | |
custom_trans = str.maketrans({';': ','}) # add custom trans here, to address oov | |
for text in text_list: | |
char_list = [] | |
text = text.translate(god_knows_why_en_testset_contains_zh_quote) | |
text = text.translate(custom_trans) | |
for seg in jieba.cut(text): | |
seg_byte_len = len(bytes(seg, 'UTF-8')) | |
if seg_byte_len == len(seg): # if pure alphabets and symbols | |
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": | |
char_list.append(" ") | |
char_list.extend(seg) | |
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters | |
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) | |
for c in seg: | |
if c not in "。,、;:?!《》【】—…": | |
char_list.append(" ") | |
char_list.append(c) | |
else: # if mixed chinese characters, alphabets and symbols | |
for c in seg: | |
if ord(c) < 256: | |
char_list.extend(c) | |
else: | |
if c not in "。,、;:?!《》【】—…": | |
char_list.append(" ") | |
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) | |
else: # if is zh punc | |
char_list.append(c) | |
final_text_list.append(char_list) | |
return final_text_list | |
# save spectrogram | |
def save_spectrogram(spectrogram, path): | |
plt.figure(figsize=(12, 4)) | |
plt.imshow(spectrogram, origin='lower', aspect='auto') | |
plt.colorbar() | |
plt.savefig(path) | |
plt.close() | |
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav | |
def get_seedtts_testset_metainfo(metalst): | |
f = open(metalst); lines = f.readlines(); f.close() | |
metainfo = [] | |
for line in lines: | |
if len(line.strip().split('|')) == 5: | |
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|') | |
elif len(line.strip().split('|')) == 4: | |
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|') | |
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav") | |
if not os.path.isabs(prompt_wav): | |
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) | |
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav)) | |
return metainfo | |
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav | |
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path): | |
f = open(metalst); lines = f.readlines(); f.close() | |
metainfo = [] | |
for line in lines: | |
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t') | |
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc) | |
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-') | |
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac') | |
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc) | |
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-') | |
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac') | |
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav)) | |
return metainfo | |
# padded to max length mel batch | |
def padded_mel_batch(ref_mels): | |
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax() | |
padded_ref_mels = [] | |
for mel in ref_mels: | |
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0) | |
padded_ref_mels.append(padded_ref_mel) | |
padded_ref_mels = torch.stack(padded_ref_mels) | |
padded_ref_mels = rearrange(padded_ref_mels, 'b d n -> b n d') | |
return padded_ref_mels | |
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav | |
def get_inference_prompt( | |
metainfo, | |
speed = 1., tokenizer = "pinyin", polyphone = True, | |
target_sample_rate = 24000, n_mel_channels = 100, hop_length = 256, target_rms = 0.1, | |
use_truth_duration = False, | |
infer_batch_size = 1, num_buckets = 200, min_secs = 3, max_secs = 40, | |
): | |
prompts_all = [] | |
min_tokens = min_secs * target_sample_rate // hop_length | |
max_tokens = max_secs * target_sample_rate // hop_length | |
batch_accum = [0] * num_buckets | |
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = \ | |
([[] for _ in range(num_buckets)] for _ in range(6)) | |
mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length) | |
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."): | |
# Audio | |
ref_audio, ref_sr = torchaudio.load(prompt_wav) | |
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio))) | |
if ref_rms < target_rms: | |
ref_audio = ref_audio * target_rms / ref_rms | |
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue." | |
if ref_sr != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate) | |
ref_audio = resampler(ref_audio) | |
# Text | |
if len(prompt_text[-1].encode('utf-8')) == 1: | |
prompt_text = prompt_text + " " | |
text = [prompt_text + gt_text] | |
if tokenizer == "pinyin": | |
text_list = convert_char_to_pinyin(text, polyphone = polyphone) | |
else: | |
text_list = text | |
# Duration, mel frame length | |
ref_mel_len = ref_audio.shape[-1] // hop_length | |
if use_truth_duration: | |
gt_audio, gt_sr = torchaudio.load(gt_wav) | |
if gt_sr != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate) | |
gt_audio = resampler(gt_audio) | |
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed) | |
# # test vocoder resynthesis | |
# ref_audio = gt_audio | |
else: | |
zh_pause_punc = r"。,、;:?!" | |
ref_text_len = len(prompt_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, prompt_text)) | |
gen_text_len = len(gt_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gt_text)) | |
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed) | |
# to mel spectrogram | |
ref_mel = mel_spectrogram(ref_audio) | |
ref_mel = rearrange(ref_mel, '1 d n -> d n') | |
# deal with batch | |
assert infer_batch_size > 0, "infer_batch_size should be greater than 0." | |
assert min_tokens <= total_mel_len <= max_tokens, \ | |
f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]." | |
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets) | |
utts[bucket_i].append(utt) | |
ref_rms_list[bucket_i].append(ref_rms) | |
ref_mels[bucket_i].append(ref_mel) | |
ref_mel_lens[bucket_i].append(ref_mel_len) | |
total_mel_lens[bucket_i].append(total_mel_len) | |
final_text_list[bucket_i].extend(text_list) | |
batch_accum[bucket_i] += total_mel_len | |
if batch_accum[bucket_i] >= infer_batch_size: | |
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}") | |
prompts_all.append(( | |
utts[bucket_i], | |
ref_rms_list[bucket_i], | |
padded_mel_batch(ref_mels[bucket_i]), | |
ref_mel_lens[bucket_i], | |
total_mel_lens[bucket_i], | |
final_text_list[bucket_i] | |
)) | |
batch_accum[bucket_i] = 0 | |
utts[bucket_i], ref_rms_list[bucket_i], ref_mels[bucket_i], ref_mel_lens[bucket_i], total_mel_lens[bucket_i], final_text_list[bucket_i] = [], [], [], [], [], [] | |
# add residual | |
for bucket_i, bucket_frames in enumerate(batch_accum): | |
if bucket_frames > 0: | |
prompts_all.append(( | |
utts[bucket_i], | |
ref_rms_list[bucket_i], | |
padded_mel_batch(ref_mels[bucket_i]), | |
ref_mel_lens[bucket_i], | |
total_mel_lens[bucket_i], | |
final_text_list[bucket_i] | |
)) | |
# not only leave easy work for last workers | |
random.seed(666) | |
random.shuffle(prompts_all) | |
return prompts_all | |
# get wav_res_ref_text of seed-tts test metalst | |
# https://github.com/BytedanceSpeech/seed-tts-eval | |
def get_seed_tts_test(metalst, gen_wav_dir, gpus): | |
f = open(metalst) | |
lines = f.readlines() | |
f.close() | |
test_set_ = [] | |
for line in tqdm(lines): | |
if len(line.strip().split('|')) == 5: | |
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|') | |
elif len(line.strip().split('|')) == 4: | |
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|') | |
if not os.path.exists(os.path.join(gen_wav_dir, utt + '.wav')): | |
continue | |
gen_wav = os.path.join(gen_wav_dir, utt + '.wav') | |
if not os.path.isabs(prompt_wav): | |
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) | |
test_set_.append((gen_wav, prompt_wav, gt_text)) | |
num_jobs = len(gpus) | |
if num_jobs == 1: | |
return [(gpus[0], test_set_)] | |
wav_per_job = len(test_set_) // num_jobs + 1 | |
test_set = [] | |
for i in range(num_jobs): | |
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job])) | |
return test_set | |
# get librispeech test-clean cross sentence test | |
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = False): | |
f = open(metalst) | |
lines = f.readlines() | |
f.close() | |
test_set_ = [] | |
for line in tqdm(lines): | |
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t') | |
if eval_ground_truth: | |
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-') | |
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac') | |
else: | |
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + '.wav')): | |
raise FileNotFoundError(f"Generated wav not found: {gen_utt}") | |
gen_wav = os.path.join(gen_wav_dir, gen_utt + '.wav') | |
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-') | |
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac') | |
test_set_.append((gen_wav, ref_wav, gen_txt)) | |
num_jobs = len(gpus) | |
if num_jobs == 1: | |
return [(gpus[0], test_set_)] | |
wav_per_job = len(test_set_) // num_jobs + 1 | |
test_set = [] | |
for i in range(num_jobs): | |
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job])) | |
return test_set | |
# load asr model | |
def load_asr_model(lang, ckpt_dir = ""): | |
if lang == "zh": | |
model = AutoModel( | |
model = os.path.join(ckpt_dir, "paraformer-zh"), | |
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"), | |
# punc_model = os.path.join(ckpt_dir, "ct-punc"), | |
# spk_model = os.path.join(ckpt_dir, "cam++"), | |
disable_update=True, | |
) # following seed-tts setting | |
elif lang == "en": | |
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir | |
model = WhisperModel(model_size, device="cuda", compute_type="float16") | |
return model | |
# WER Evaluation, the way Seed-TTS does | |
def run_asr_wer(args): | |
rank, lang, test_set, ckpt_dir = args | |
if lang == "zh": | |
torch.cuda.set_device(rank) | |
elif lang == "en": | |
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank) | |
else: | |
raise NotImplementedError("lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now.") | |
asr_model = load_asr_model(lang, ckpt_dir = ckpt_dir) | |
punctuation_all = punctuation + string.punctuation | |
wers = [] | |
for gen_wav, prompt_wav, truth in tqdm(test_set): | |
if lang == "zh": | |
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True) | |
hypo = res[0]["text"] | |
hypo = zhconv.convert(hypo, 'zh-cn') | |
elif lang == "en": | |
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en") | |
hypo = '' | |
for segment in segments: | |
hypo = hypo + ' ' + segment.text | |
# raw_truth = truth | |
# raw_hypo = hypo | |
for x in punctuation_all: | |
truth = truth.replace(x, '') | |
hypo = hypo.replace(x, '') | |
truth = truth.replace(' ', ' ') | |
hypo = hypo.replace(' ', ' ') | |
if lang == "zh": | |
truth = " ".join([x for x in truth]) | |
hypo = " ".join([x for x in hypo]) | |
elif lang == "en": | |
truth = truth.lower() | |
hypo = hypo.lower() | |
measures = compute_measures(truth, hypo) | |
wer = measures["wer"] | |
# ref_list = truth.split(" ") | |
# subs = measures["substitutions"] / len(ref_list) | |
# dele = measures["deletions"] / len(ref_list) | |
# inse = measures["insertions"] / len(ref_list) | |
wers.append(wer) | |
return wers | |
# SIM Evaluation | |
def run_sim(args): | |
rank, test_set, ckpt_dir = args | |
device = f"cuda:{rank}" | |
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=None) | |
state_dict = torch.load(ckpt_dir, map_location=lambda storage, loc: storage) | |
model.load_state_dict(state_dict['model'], strict=False) | |
use_gpu=True if torch.cuda.is_available() else False | |
if use_gpu: | |
model = model.cuda(device) | |
model.eval() | |
sim_list = [] | |
for wav1, wav2, truth in tqdm(test_set): | |
wav1, sr1 = torchaudio.load(wav1) | |
wav2, sr2 = torchaudio.load(wav2) | |
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000) | |
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000) | |
wav1 = resample1(wav1) | |
wav2 = resample2(wav2) | |
if use_gpu: | |
wav1 = wav1.cuda(device) | |
wav2 = wav2.cuda(device) | |
with torch.no_grad(): | |
emb1 = model(wav1) | |
emb2 = model(wav2) | |
sim = F.cosine_similarity(emb1, emb2)[0].item() | |
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).") | |
sim_list.append(sim) | |
return sim_list | |
# filter func for dirty data with many repetitions | |
def repetition_found(text, length = 2, tolerance = 10): | |
pattern_count = defaultdict(int) | |
for i in range(len(text) - length + 1): | |
pattern = text[i:i + length] | |
pattern_count[pattern] += 1 | |
for pattern, count in pattern_count.items(): | |
if count > tolerance: | |
return True | |
return False | |
# load model checkpoint for inference | |
def load_checkpoint(model, ckpt_path, device, use_ema = True): | |
from ema_pytorch import EMA | |
ckpt_type = ckpt_path.split(".")[-1] | |
if ckpt_type == "safetensors": | |
from safetensors.torch import load_file | |
checkpoint = load_file(ckpt_path, device=device) | |
else: | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
if use_ema == True: | |
ema_model = EMA(model, include_online_model = False).to(device) | |
if ckpt_type == "safetensors": | |
ema_model.load_state_dict(checkpoint) | |
else: | |
ema_model.load_state_dict(checkpoint['ema_model_state_dict']) | |
ema_model.copy_params_from_ema_to_model() | |
else: | |
model.load_state_dict(checkpoint['model_state_dict']) | |
return model |