Spaces:
Running
on
Zero
Running
on
Zero
import socket | |
import struct | |
import torch | |
import torchaudio | |
from threading import Thread | |
import gc | |
import traceback | |
from infer.utils_infer import infer_batch_process, preprocess_ref_audio_text, load_vocoder, load_model | |
from model.backbones.dit import DiT | |
class TTSStreamingProcessor: | |
def __init__(self, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32): | |
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the model using the provided checkpoint and vocab files | |
self.model = load_model( | |
model_cls=DiT, | |
model_cfg=dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4), | |
ckpt_path=ckpt_file, | |
mel_spec_type="vocos", # or "bigvgan" depending on vocoder | |
vocab_file=vocab_file, | |
ode_method="euler", | |
use_ema=True, | |
device=self.device, | |
).to(self.device, dtype=dtype) | |
# Load the vocoder | |
self.vocoder = load_vocoder(is_local=False) | |
# Set sampling rate for streaming | |
self.sampling_rate = 24000 # Consistency with client | |
# Set reference audio and text | |
self.ref_audio = ref_audio | |
self.ref_text = ref_text | |
# Warm up the model | |
self._warm_up() | |
def _warm_up(self): | |
"""Warm up the model with a dummy input to ensure it's ready for real-time processing.""" | |
print("Warming up the model...") | |
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text) | |
audio, sr = torchaudio.load(ref_audio) | |
gen_text = "Warm-up text for the model." | |
# Pass the vocoder as an argument here | |
infer_batch_process((audio, sr), ref_text, [gen_text], self.model, self.vocoder, device=self.device) | |
print("Warm-up completed.") | |
def generate_stream(self, text, play_steps_in_s=0.5): | |
"""Generate audio in chunks and yield them in real-time.""" | |
# Preprocess the reference audio and text | |
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text) | |
# Load reference audio | |
audio, sr = torchaudio.load(ref_audio) | |
# Run inference for the input text | |
audio_chunk, final_sample_rate, _ = infer_batch_process( | |
(audio, sr), | |
ref_text, | |
[text], | |
self.model, | |
self.vocoder, | |
device=self.device, # Pass vocoder here | |
) | |
# Break the generated audio into chunks and send them | |
chunk_size = int(final_sample_rate * play_steps_in_s) | |
if len(audio_chunk) < chunk_size: | |
packed_audio = struct.pack(f"{len(audio_chunk)}f", *audio_chunk) | |
yield packed_audio | |
return | |
for i in range(0, len(audio_chunk), chunk_size): | |
chunk = audio_chunk[i : i + chunk_size] | |
# Check if it's the final chunk | |
if i + chunk_size >= len(audio_chunk): | |
chunk = audio_chunk[i:] | |
# Send the chunk if it is not empty | |
if len(chunk) > 0: | |
packed_audio = struct.pack(f"{len(chunk)}f", *chunk) | |
yield packed_audio | |
def handle_client(client_socket, processor): | |
try: | |
while True: | |
# Receive data from the client | |
data = client_socket.recv(1024).decode("utf-8") | |
if not data: | |
break | |
try: | |
# The client sends the text input | |
text = data.strip() | |
# Generate and stream audio chunks | |
for audio_chunk in processor.generate_stream(text): | |
client_socket.sendall(audio_chunk) | |
# Send end-of-audio signal | |
client_socket.sendall(b"END_OF_AUDIO") | |
except Exception as inner_e: | |
print(f"Error during processing: {inner_e}") | |
traceback.print_exc() # Print the full traceback to diagnose the issue | |
break | |
except Exception as e: | |
print(f"Error handling client: {e}") | |
traceback.print_exc() | |
finally: | |
client_socket.close() | |
def start_server(host, port, processor): | |
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |
server.bind((host, port)) | |
server.listen(5) | |
print(f"Server listening on {host}:{port}") | |
while True: | |
client_socket, addr = server.accept() | |
print(f"Accepted connection from {addr}") | |
client_handler = Thread(target=handle_client, args=(client_socket, processor)) | |
client_handler.start() | |
if __name__ == "__main__": | |
try: | |
# Load the model and vocoder using the provided files | |
ckpt_file = "" # pointing your checkpoint "ckpts/model/model_1096.pt" | |
vocab_file = "" # Add vocab file path if needed | |
ref_audio = "" # add ref audio"./tests/ref_audio/reference.wav" | |
ref_text = "" | |
# Initialize the processor with the model and vocoder | |
processor = TTSStreamingProcessor( | |
ckpt_file=ckpt_file, | |
vocab_file=vocab_file, | |
ref_audio=ref_audio, | |
ref_text=ref_text, | |
dtype=torch.float32, | |
) | |
# Start the server | |
start_server("0.0.0.0", 9998, processor) | |
except KeyboardInterrupt: | |
gc.collect() | |