mrfakename commited on
Commit
4ee33aa
1 Parent(s): 716d8d8

Add source code

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +373 -0
  2. arch.png +0 -0
  3. demo.ipynb +0 -0
  4. setup.py +3 -0
  5. ttts-src/.gitignore +15 -0
  6. ttts.egg-info/PKG-INFO +3 -0
  7. ttts.egg-info/SOURCES.txt +5 -0
  8. ttts.egg-info/dependency_links.txt +1 -0
  9. ttts.egg-info/top_level.txt +1 -0
  10. ttts/0.wav +0 -0
  11. ttts/3.wav +0 -0
  12. ttts/AA_diffusion_deprecated/cldm/cldm.py +875 -0
  13. ttts/AA_diffusion_deprecated/cldm/cond_emb.py +339 -0
  14. ttts/AA_diffusion_deprecated/cldm/ddim_hacked.py +317 -0
  15. ttts/AA_diffusion_deprecated/cldm/hack.py +111 -0
  16. ttts/AA_diffusion_deprecated/cldm/hf_model.py +193 -0
  17. ttts/AA_diffusion_deprecated/cldm/logger.py +76 -0
  18. ttts/AA_diffusion_deprecated/cldm/model.py +28 -0
  19. ttts/AA_diffusion_deprecated/cldm/modified_resnet.py +181 -0
  20. ttts/AA_diffusion_deprecated/cldm/pos_embed.py +96 -0
  21. ttts/AA_diffusion_deprecated/cldm/timm_model.py +152 -0
  22. ttts/AA_diffusion_deprecated/cldm/transformer.py +806 -0
  23. ttts/AA_diffusion_deprecated/cldm/utils.py +89 -0
  24. ttts/AA_diffusion_deprecated/config.yaml +134 -0
  25. ttts/AA_diffusion_deprecated/dataset.py +152 -0
  26. ttts/AA_diffusion_deprecated/ldm/data/__init__.py +0 -0
  27. ttts/AA_diffusion_deprecated/ldm/data/util.py +24 -0
  28. ttts/AA_diffusion_deprecated/ldm/models/autoencoder.py +219 -0
  29. ttts/AA_diffusion_deprecated/ldm/models/diffusion/__init__.py +0 -0
  30. ttts/AA_diffusion_deprecated/ldm/models/diffusion/ddim.py +336 -0
  31. ttts/AA_diffusion_deprecated/ldm/models/diffusion/ddpm.py +1827 -0
  32. ttts/AA_diffusion_deprecated/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
  33. ttts/AA_diffusion_deprecated/ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
  34. ttts/AA_diffusion_deprecated/ldm/models/diffusion/dpm_solver/sampler.py +87 -0
  35. ttts/AA_diffusion_deprecated/ldm/models/diffusion/plms.py +244 -0
  36. ttts/AA_diffusion_deprecated/ldm/models/diffusion/sampling_util.py +22 -0
  37. ttts/AA_diffusion_deprecated/ldm/modules/attention.py +365 -0
  38. ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/__init__.py +0 -0
  39. ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/model.py +852 -0
  40. ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/openaimodel.py +796 -0
  41. ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/upscaling.py +81 -0
  42. ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/util.py +275 -0
  43. ttts/AA_diffusion_deprecated/ldm/modules/distributions/__init__.py +0 -0
  44. ttts/AA_diffusion_deprecated/ldm/modules/distributions/distributions.py +92 -0
  45. ttts/AA_diffusion_deprecated/ldm/modules/ema.py +80 -0
  46. ttts/AA_diffusion_deprecated/ldm/modules/encoders/__init__.py +0 -0
  47. ttts/AA_diffusion_deprecated/ldm/modules/encoders/modules.py +213 -0
  48. ttts/AA_diffusion_deprecated/ldm/modules/image_degradation/__init__.py +2 -0
  49. ttts/AA_diffusion_deprecated/ldm/modules/image_degradation/bsrgan.py +730 -0
  50. ttts/AA_diffusion_deprecated/ldm/modules/image_degradation/bsrgan_light.py +651 -0
LICENSE ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mozilla Public License Version 2.0
2
+ ==================================
3
+
4
+ 1. Definitions
5
+ --------------
6
+
7
+ 1.1. "Contributor"
8
+ means each individual or legal entity that creates, contributes to
9
+ the creation of, or owns Covered Software.
10
+
11
+ 1.2. "Contributor Version"
12
+ means the combination of the Contributions of others (if any) used
13
+ by a Contributor and that particular Contributor's Contribution.
14
+
15
+ 1.3. "Contribution"
16
+ means Covered Software of a particular Contributor.
17
+
18
+ 1.4. "Covered Software"
19
+ means Source Code Form to which the initial Contributor has attached
20
+ the notice in Exhibit A, the Executable Form of such Source Code
21
+ Form, and Modifications of such Source Code Form, in each case
22
+ including portions thereof.
23
+
24
+ 1.5. "Incompatible With Secondary Licenses"
25
+ means
26
+
27
+ (a) that the initial Contributor has attached the notice described
28
+ in Exhibit B to the Covered Software; or
29
+
30
+ (b) that the Covered Software was made available under the terms of
31
+ version 1.1 or earlier of the License, but not also under the
32
+ terms of a Secondary License.
33
+
34
+ 1.6. "Executable Form"
35
+ means any form of the work other than Source Code Form.
36
+
37
+ 1.7. "Larger Work"
38
+ means a work that combines Covered Software with other material, in
39
+ a separate file or files, that is not Covered Software.
40
+
41
+ 1.8. "License"
42
+ means this document.
43
+
44
+ 1.9. "Licensable"
45
+ means having the right to grant, to the maximum extent possible,
46
+ whether at the time of the initial grant or subsequently, any and
47
+ all of the rights conveyed by this License.
48
+
49
+ 1.10. "Modifications"
50
+ means any of the following:
51
+
52
+ (a) any file in Source Code Form that results from an addition to,
53
+ deletion from, or modification of the contents of Covered
54
+ Software; or
55
+
56
+ (b) any new file in Source Code Form that contains any Covered
57
+ Software.
58
+
59
+ 1.11. "Patent Claims" of a Contributor
60
+ means any patent claim(s), including without limitation, method,
61
+ process, and apparatus claims, in any patent Licensable by such
62
+ Contributor that would be infringed, but for the grant of the
63
+ License, by the making, using, selling, offering for sale, having
64
+ made, import, or transfer of either its Contributions or its
65
+ Contributor Version.
66
+
67
+ 1.12. "Secondary License"
68
+ means either the GNU General Public License, Version 2.0, the GNU
69
+ Lesser General Public License, Version 2.1, the GNU Affero General
70
+ Public License, Version 3.0, or any later versions of those
71
+ licenses.
72
+
73
+ 1.13. "Source Code Form"
74
+ means the form of the work preferred for making modifications.
75
+
76
+ 1.14. "You" (or "Your")
77
+ means an individual or a legal entity exercising rights under this
78
+ License. For legal entities, "You" includes any entity that
79
+ controls, is controlled by, or is under common control with You. For
80
+ purposes of this definition, "control" means (a) the power, direct
81
+ or indirect, to cause the direction or management of such entity,
82
+ whether by contract or otherwise, or (b) ownership of more than
83
+ fifty percent (50%) of the outstanding shares or beneficial
84
+ ownership of such entity.
85
+
86
+ 2. License Grants and Conditions
87
+ --------------------------------
88
+
89
+ 2.1. Grants
90
+
91
+ Each Contributor hereby grants You a world-wide, royalty-free,
92
+ non-exclusive license:
93
+
94
+ (a) under intellectual property rights (other than patent or trademark)
95
+ Licensable by such Contributor to use, reproduce, make available,
96
+ modify, display, perform, distribute, and otherwise exploit its
97
+ Contributions, either on an unmodified basis, with Modifications, or
98
+ as part of a Larger Work; and
99
+
100
+ (b) under Patent Claims of such Contributor to make, use, sell, offer
101
+ for sale, have made, import, and otherwise transfer either its
102
+ Contributions or its Contributor Version.
103
+
104
+ 2.2. Effective Date
105
+
106
+ The licenses granted in Section 2.1 with respect to any Contribution
107
+ become effective for each Contribution on the date the Contributor first
108
+ distributes such Contribution.
109
+
110
+ 2.3. Limitations on Grant Scope
111
+
112
+ The licenses granted in this Section 2 are the only rights granted under
113
+ this License. No additional rights or licenses will be implied from the
114
+ distribution or licensing of Covered Software under this License.
115
+ Notwithstanding Section 2.1(b) above, no patent license is granted by a
116
+ Contributor:
117
+
118
+ (a) for any code that a Contributor has removed from Covered Software;
119
+ or
120
+
121
+ (b) for infringements caused by: (i) Your and any other third party's
122
+ modifications of Covered Software, or (ii) the combination of its
123
+ Contributions with other software (except as part of its Contributor
124
+ Version); or
125
+
126
+ (c) under Patent Claims infringed by Covered Software in the absence of
127
+ its Contributions.
128
+
129
+ This License does not grant any rights in the trademarks, service marks,
130
+ or logos of any Contributor (except as may be necessary to comply with
131
+ the notice requirements in Section 3.4).
132
+
133
+ 2.4. Subsequent Licenses
134
+
135
+ No Contributor makes additional grants as a result of Your choice to
136
+ distribute the Covered Software under a subsequent version of this
137
+ License (see Section 10.2) or under the terms of a Secondary License (if
138
+ permitted under the terms of Section 3.3).
139
+
140
+ 2.5. Representation
141
+
142
+ Each Contributor represents that the Contributor believes its
143
+ Contributions are its original creation(s) or it has sufficient rights
144
+ to grant the rights to its Contributions conveyed by this License.
145
+
146
+ 2.6. Fair Use
147
+
148
+ This License is not intended to limit any rights You have under
149
+ applicable copyright doctrines of fair use, fair dealing, or other
150
+ equivalents.
151
+
152
+ 2.7. Conditions
153
+
154
+ Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
155
+ in Section 2.1.
156
+
157
+ 3. Responsibilities
158
+ -------------------
159
+
160
+ 3.1. Distribution of Source Form
161
+
162
+ All distribution of Covered Software in Source Code Form, including any
163
+ Modifications that You create or to which You contribute, must be under
164
+ the terms of this License. You must inform recipients that the Source
165
+ Code Form of the Covered Software is governed by the terms of this
166
+ License, and how they can obtain a copy of this License. You may not
167
+ attempt to alter or restrict the recipients' rights in the Source Code
168
+ Form.
169
+
170
+ 3.2. Distribution of Executable Form
171
+
172
+ If You distribute Covered Software in Executable Form then:
173
+
174
+ (a) such Covered Software must also be made available in Source Code
175
+ Form, as described in Section 3.1, and You must inform recipients of
176
+ the Executable Form how they can obtain a copy of such Source Code
177
+ Form by reasonable means in a timely manner, at a charge no more
178
+ than the cost of distribution to the recipient; and
179
+
180
+ (b) You may distribute such Executable Form under the terms of this
181
+ License, or sublicense it under different terms, provided that the
182
+ license for the Executable Form does not attempt to limit or alter
183
+ the recipients' rights in the Source Code Form under this License.
184
+
185
+ 3.3. Distribution of a Larger Work
186
+
187
+ You may create and distribute a Larger Work under terms of Your choice,
188
+ provided that You also comply with the requirements of this License for
189
+ the Covered Software. If the Larger Work is a combination of Covered
190
+ Software with a work governed by one or more Secondary Licenses, and the
191
+ Covered Software is not Incompatible With Secondary Licenses, this
192
+ License permits You to additionally distribute such Covered Software
193
+ under the terms of such Secondary License(s), so that the recipient of
194
+ the Larger Work may, at their option, further distribute the Covered
195
+ Software under the terms of either this License or such Secondary
196
+ License(s).
197
+
198
+ 3.4. Notices
199
+
200
+ You may not remove or alter the substance of any license notices
201
+ (including copyright notices, patent notices, disclaimers of warranty,
202
+ or limitations of liability) contained within the Source Code Form of
203
+ the Covered Software, except that You may alter any license notices to
204
+ the extent required to remedy known factual inaccuracies.
205
+
206
+ 3.5. Application of Additional Terms
207
+
208
+ You may choose to offer, and to charge a fee for, warranty, support,
209
+ indemnity or liability obligations to one or more recipients of Covered
210
+ Software. However, You may do so only on Your own behalf, and not on
211
+ behalf of any Contributor. You must make it absolutely clear that any
212
+ such warranty, support, indemnity, or liability obligation is offered by
213
+ You alone, and You hereby agree to indemnify every Contributor for any
214
+ liability incurred by such Contributor as a result of warranty, support,
215
+ indemnity or liability terms You offer. You may include additional
216
+ disclaimers of warranty and limitations of liability specific to any
217
+ jurisdiction.
218
+
219
+ 4. Inability to Comply Due to Statute or Regulation
220
+ ---------------------------------------------------
221
+
222
+ If it is impossible for You to comply with any of the terms of this
223
+ License with respect to some or all of the Covered Software due to
224
+ statute, judicial order, or regulation then You must: (a) comply with
225
+ the terms of this License to the maximum extent possible; and (b)
226
+ describe the limitations and the code they affect. Such description must
227
+ be placed in a text file included with all distributions of the Covered
228
+ Software under this License. Except to the extent prohibited by statute
229
+ or regulation, such description must be sufficiently detailed for a
230
+ recipient of ordinary skill to be able to understand it.
231
+
232
+ 5. Termination
233
+ --------------
234
+
235
+ 5.1. The rights granted under this License will terminate automatically
236
+ if You fail to comply with any of its terms. However, if You become
237
+ compliant, then the rights granted under this License from a particular
238
+ Contributor are reinstated (a) provisionally, unless and until such
239
+ Contributor explicitly and finally terminates Your grants, and (b) on an
240
+ ongoing basis, if such Contributor fails to notify You of the
241
+ non-compliance by some reasonable means prior to 60 days after You have
242
+ come back into compliance. Moreover, Your grants from a particular
243
+ Contributor are reinstated on an ongoing basis if such Contributor
244
+ notifies You of the non-compliance by some reasonable means, this is the
245
+ first time You have received notice of non-compliance with this License
246
+ from such Contributor, and You become compliant prior to 30 days after
247
+ Your receipt of the notice.
248
+
249
+ 5.2. If You initiate litigation against any entity by asserting a patent
250
+ infringement claim (excluding declaratory judgment actions,
251
+ counter-claims, and cross-claims) alleging that a Contributor Version
252
+ directly or indirectly infringes any patent, then the rights granted to
253
+ You by any and all Contributors for the Covered Software under Section
254
+ 2.1 of this License shall terminate.
255
+
256
+ 5.3. In the event of termination under Sections 5.1 or 5.2 above, all
257
+ end user license agreements (excluding distributors and resellers) which
258
+ have been validly granted by You or Your distributors under this License
259
+ prior to termination shall survive termination.
260
+
261
+ ************************************************************************
262
+ * *
263
+ * 6. Disclaimer of Warranty *
264
+ * ------------------------- *
265
+ * *
266
+ * Covered Software is provided under this License on an "as is" *
267
+ * basis, without warranty of any kind, either expressed, implied, or *
268
+ * statutory, including, without limitation, warranties that the *
269
+ * Covered Software is free of defects, merchantable, fit for a *
270
+ * particular purpose or non-infringing. The entire risk as to the *
271
+ * quality and performance of the Covered Software is with You. *
272
+ * Should any Covered Software prove defective in any respect, You *
273
+ * (not any Contributor) assume the cost of any necessary servicing, *
274
+ * repair, or correction. This disclaimer of warranty constitutes an *
275
+ * essential part of this License. No use of any Covered Software is *
276
+ * authorized under this License except under this disclaimer. *
277
+ * *
278
+ ************************************************************************
279
+
280
+ ************************************************************************
281
+ * *
282
+ * 7. Limitation of Liability *
283
+ * -------------------------- *
284
+ * *
285
+ * Under no circumstances and under no legal theory, whether tort *
286
+ * (including negligence), contract, or otherwise, shall any *
287
+ * Contributor, or anyone who distributes Covered Software as *
288
+ * permitted above, be liable to You for any direct, indirect, *
289
+ * special, incidental, or consequential damages of any character *
290
+ * including, without limitation, damages for lost profits, loss of *
291
+ * goodwill, work stoppage, computer failure or malfunction, or any *
292
+ * and all other commercial damages or losses, even if such party *
293
+ * shall have been informed of the possibility of such damages. This *
294
+ * limitation of liability shall not apply to liability for death or *
295
+ * personal injury resulting from such party's negligence to the *
296
+ * extent applicable law prohibits such limitation. Some *
297
+ * jurisdictions do not allow the exclusion or limitation of *
298
+ * incidental or consequential damages, so this exclusion and *
299
+ * limitation may not apply to You. *
300
+ * *
301
+ ************************************************************************
302
+
303
+ 8. Litigation
304
+ -------------
305
+
306
+ Any litigation relating to this License may be brought only in the
307
+ courts of a jurisdiction where the defendant maintains its principal
308
+ place of business and such litigation shall be governed by laws of that
309
+ jurisdiction, without reference to its conflict-of-law provisions.
310
+ Nothing in this Section shall prevent a party's ability to bring
311
+ cross-claims or counter-claims.
312
+
313
+ 9. Miscellaneous
314
+ ----------------
315
+
316
+ This License represents the complete agreement concerning the subject
317
+ matter hereof. If any provision of this License is held to be
318
+ unenforceable, such provision shall be reformed only to the extent
319
+ necessary to make it enforceable. Any law or regulation which provides
320
+ that the language of a contract shall be construed against the drafter
321
+ shall not be used to construe this License against a Contributor.
322
+
323
+ 10. Versions of the License
324
+ ---------------------------
325
+
326
+ 10.1. New Versions
327
+
328
+ Mozilla Foundation is the license steward. Except as provided in Section
329
+ 10.3, no one other than the license steward has the right to modify or
330
+ publish new versions of this License. Each version will be given a
331
+ distinguishing version number.
332
+
333
+ 10.2. Effect of New Versions
334
+
335
+ You may distribute the Covered Software under the terms of the version
336
+ of the License under which You originally received the Covered Software,
337
+ or under the terms of any subsequent version published by the license
338
+ steward.
339
+
340
+ 10.3. Modified Versions
341
+
342
+ If you create software not governed by this License, and you want to
343
+ create a new license for such software, you may create and use a
344
+ modified version of this License if you rename the license and remove
345
+ any references to the name of the license steward (except to note that
346
+ such modified license differs from this License).
347
+
348
+ 10.4. Distributing Source Code Form that is Incompatible With Secondary
349
+ Licenses
350
+
351
+ If You choose to distribute Source Code Form that is Incompatible With
352
+ Secondary Licenses under the terms of this version of the License, the
353
+ notice described in Exhibit B of this License must be attached.
354
+
355
+ Exhibit A - Source Code Form License Notice
356
+ -------------------------------------------
357
+
358
+ This Source Code Form is subject to the terms of the Mozilla Public
359
+ License, v. 2.0. If a copy of the MPL was not distributed with this
360
+ file, You can obtain one at http://mozilla.org/MPL/2.0/.
361
+
362
+ If it is not possible or desirable to put the notice in a particular
363
+ file, then You may include the notice in a location (such as a LICENSE
364
+ file in a relevant directory) where a recipient would be likely to look
365
+ for such a notice.
366
+
367
+ You may add additional accurate notices of copyright ownership.
368
+
369
+ Exhibit B - "Incompatible With Secondary Licenses" Notice
370
+ ---------------------------------------------------------
371
+
372
+ This Source Code Form is "Incompatible With Secondary Licenses", as
373
+ defined by the Mozilla Public License, v. 2.0.
arch.png ADDED
demo.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
setup.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from setuptools import setup, find_packages
2
+
3
+ setup(name='ttts', version='0.1', packages=find_packages())
ttts-src/.gitignore ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ttts/datasets/*
2
+ */**/*.pt
3
+ */**/*.pyc
4
+ */**/logs/*
5
+ */**/*.txt
6
+ */**/*.jsonl
7
+ */**/*.m4a
8
+ ttts.egg-info/*
9
+ .vscode/*
10
+ damo/*
11
+ .cache/*
12
+ */**/*.wav
13
+ */**/*.mp3
14
+ ast_indexer
15
+ !3.wav
ttts.egg-info/PKG-INFO ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: ttts
3
+ Version: 0.1
ttts.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ setup.py
2
+ ttts.egg-info/PKG-INFO
3
+ ttts.egg-info/SOURCES.txt
4
+ ttts.egg-info/dependency_links.txt
5
+ ttts.egg-info/top_level.txt
ttts.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
ttts.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
ttts/0.wav ADDED
Binary file (443 kB). View file
 
ttts/3.wav ADDED
Binary file (204 kB). View file
 
ttts/AA_diffusion_deprecated/cldm/cldm.py ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import einops
2
+ import torch
3
+ import torch as th
4
+ import torch.nn as nn
5
+
6
+ from ldm.modules.diffusionmodules.util import (
7
+ conv_nd,
8
+ linear,
9
+ normalization,
10
+ zero_module,
11
+ timestep_embedding,
12
+ )
13
+
14
+ from einops import rearrange, repeat
15
+ from torchvision.utils import make_grid
16
+ from ldm.modules.attention import SpatialTransformer
17
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock, Upsample, convert_module_to_f16, convert_module_to_f32
18
+ from ldm.models.diffusion.ddpm import LatentDiffusion
19
+ from ldm.util import log_txt_as_img, exists, instantiate_from_config
20
+ from ldm.models.diffusion.ddim import DDIMSampler
21
+
22
+
23
+ class ControlledUnetModel(nn.Module):
24
+ """
25
+ The full UNet model with attention and timestep embedding.
26
+ :param in_channels: channels in the input Tensor.
27
+ :param model_channels: base channel count for the model.
28
+ :param out_channels: channels in the output Tensor.
29
+ :param num_res_blocks: number of residual blocks per downsample.
30
+ :param attention_resolutions: a collection of downsample rates at which
31
+ attention will take place. May be a set, list, or tuple.
32
+ For example, if this contains 4, then at 4x downsampling, attention
33
+ will be used.
34
+ :param dropout: the dropout probability.
35
+ :param channel_mult: channel multiplier for each level of the UNet.
36
+ :param conv_resample: if True, use learned convolutions for upsampling and
37
+ downsampling.
38
+ :param dims: determines if the signal is 1D, 2D, or 3D.
39
+ :param num_classes: if specified (as an int), then this model will be
40
+ class-conditional with `num_classes` classes.
41
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
42
+ :param num_heads: the number of attention heads in each attention layer.
43
+ :param num_heads_channels: if specified, ignore num_heads and instead use
44
+ a fixed channel width per attention head.
45
+ :param num_heads_upsample: works with num_heads to set a different number
46
+ of heads for upsampling. Deprecated.
47
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
48
+ :param resblock_updown: use residual blocks for up/downsampling.
49
+ :param use_new_attention_order: use a different attention pattern for potentially
50
+ increased efficiency.
51
+ """
52
+
53
+ def __init__(
54
+ self,
55
+ hint_in_channels,
56
+ hint_out_channels,
57
+ image_size,
58
+ in_channels,
59
+ model_channels,
60
+ out_channels,
61
+ num_res_blocks,
62
+ attention_resolutions,
63
+ dropout=0,
64
+ channel_mult=(1, 2, 4, 8),
65
+ conv_resample=True,
66
+ dims=1,
67
+ num_classes=None,
68
+ use_checkpoint=False,
69
+ use_fp16=False,
70
+ num_heads=-1,
71
+ num_head_channels=-1,
72
+ num_heads_upsample=-1,
73
+ use_scale_shift_norm=False,
74
+ resblock_updown=False,
75
+ use_new_attention_order=False,
76
+ use_spatial_transformer=False, # custom transformer support
77
+ transformer_depth=1, # custom transformer support
78
+ context_dim=None, # custom transformer support
79
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
80
+ legacy=True,
81
+ disable_self_attentions=None,
82
+ num_attention_blocks=None,
83
+ disable_middle_self_attn=False,
84
+ use_linear_in_transformer=False,
85
+ ):
86
+ super().__init__()
87
+ if use_spatial_transformer:
88
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
89
+
90
+ if context_dim is not None:
91
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
92
+ from omegaconf.listconfig import ListConfig
93
+ if type(context_dim) == ListConfig:
94
+ context_dim = list(context_dim)
95
+
96
+ if num_heads_upsample == -1:
97
+ num_heads_upsample = num_heads
98
+
99
+ if num_heads == -1:
100
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
101
+
102
+ if num_head_channels == -1:
103
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
104
+
105
+ self.image_size = image_size
106
+ self.in_channels = in_channels
107
+ self.model_channels = model_channels
108
+ self.out_channels = out_channels
109
+ if isinstance(num_res_blocks, int):
110
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
111
+ else:
112
+ if len(num_res_blocks) != len(channel_mult):
113
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
114
+ "as a list/tuple (per-level) with the same length as channel_mult")
115
+ self.num_res_blocks = num_res_blocks
116
+ if disable_self_attentions is not None:
117
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
118
+ assert len(disable_self_attentions) == len(channel_mult)
119
+ if num_attention_blocks is not None:
120
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
121
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
122
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
123
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
124
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
125
+ f"attention will still not be set.")
126
+
127
+ self.attention_resolutions = attention_resolutions
128
+ self.dropout = dropout
129
+ self.channel_mult = channel_mult
130
+ self.conv_resample = conv_resample
131
+ self.num_classes = num_classes
132
+ self.use_checkpoint = use_checkpoint
133
+ self.dtype = th.float16 if use_fp16 else th.float32
134
+ self.num_heads = num_heads
135
+ self.num_head_channels = num_head_channels
136
+ self.num_heads_upsample = num_heads_upsample
137
+ self.predict_codebook_ids = n_embed is not None
138
+
139
+ time_embed_dim = model_channels * 4
140
+ self.time_embed = nn.Sequential(
141
+ linear(model_channels, time_embed_dim),
142
+ nn.SiLU(),
143
+ linear(time_embed_dim, time_embed_dim),
144
+ )
145
+
146
+ if self.num_classes is not None:
147
+ if isinstance(self.num_classes, int):
148
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
149
+ elif self.num_classes == "continuous":
150
+ print("setting up linear c_adm embedding layer")
151
+ self.label_emb = nn.Linear(1, time_embed_dim)
152
+ else:
153
+ raise ValueError()
154
+
155
+ self.input_blocks = nn.ModuleList(
156
+ [
157
+ TimestepEmbedSequential(
158
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
159
+ )
160
+ ]
161
+ )
162
+ self._feature_size = model_channels
163
+ input_block_chans = [model_channels]
164
+ ch = model_channels
165
+ ds = 1
166
+ for level, mult in enumerate(channel_mult):
167
+ for nr in range(self.num_res_blocks[level]):
168
+ layers = [
169
+ ResBlock(
170
+ ch,
171
+ time_embed_dim,
172
+ dropout,
173
+ out_channels=mult * model_channels,
174
+ dims=dims,
175
+ use_checkpoint=use_checkpoint,
176
+ use_scale_shift_norm=use_scale_shift_norm,
177
+ )
178
+ ]
179
+ ch = mult * model_channels
180
+ if ds in attention_resolutions:
181
+ if num_head_channels == -1:
182
+ dim_head = ch // num_heads
183
+ else:
184
+ num_heads = ch // num_head_channels
185
+ dim_head = num_head_channels
186
+ if legacy:
187
+ #num_heads = 1
188
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
189
+ if exists(disable_self_attentions):
190
+ disabled_sa = disable_self_attentions[level]
191
+ else:
192
+ disabled_sa = False
193
+
194
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
195
+ layers.append(
196
+ AttentionBlock(
197
+ ch,
198
+ use_checkpoint=use_checkpoint,
199
+ num_heads=num_heads,
200
+ num_head_channels=dim_head,
201
+ use_new_attention_order=use_new_attention_order,
202
+ ) if not use_spatial_transformer else SpatialTransformer(
203
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
204
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
205
+ use_checkpoint=use_checkpoint
206
+ )
207
+ )
208
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
209
+ self._feature_size += ch
210
+ input_block_chans.append(ch)
211
+ if level != len(channel_mult) - 1:
212
+ out_ch = ch
213
+ self.input_blocks.append(
214
+ TimestepEmbedSequential(
215
+ ResBlock(
216
+ ch,
217
+ time_embed_dim,
218
+ dropout,
219
+ out_channels=out_ch,
220
+ dims=dims,
221
+ use_checkpoint=use_checkpoint,
222
+ use_scale_shift_norm=use_scale_shift_norm,
223
+ # down=True,
224
+ )
225
+ if resblock_updown
226
+ else Downsample(
227
+ ch, conv_resample, dims=dims, out_channels=out_ch
228
+ )
229
+ )
230
+ )
231
+ ch = out_ch
232
+ input_block_chans.append(ch)
233
+ ds *= 2
234
+ self._feature_size += ch
235
+
236
+ if num_head_channels == -1:
237
+ dim_head = ch // num_heads
238
+ else:
239
+ num_heads = ch // num_head_channels
240
+ dim_head = num_head_channels
241
+ if legacy:
242
+ #num_heads = 1
243
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
244
+ self.middle_block = TimestepEmbedSequential(
245
+ ResBlock(
246
+ ch,
247
+ time_embed_dim,
248
+ dropout,
249
+ dims=dims,
250
+ use_checkpoint=use_checkpoint,
251
+ use_scale_shift_norm=use_scale_shift_norm,
252
+ ),
253
+ AttentionBlock(
254
+ ch,
255
+ use_checkpoint=use_checkpoint,
256
+ num_heads=num_heads,
257
+ num_head_channels=dim_head,
258
+ use_new_attention_order=use_new_attention_order,
259
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
260
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
261
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
262
+ use_checkpoint=use_checkpoint
263
+ ),
264
+ ResBlock(
265
+ ch,
266
+ time_embed_dim,
267
+ dropout,
268
+ dims=dims,
269
+ use_checkpoint=use_checkpoint,
270
+ use_scale_shift_norm=use_scale_shift_norm,
271
+ ),
272
+ )
273
+ self._feature_size += ch
274
+
275
+ self.output_blocks = nn.ModuleList([])
276
+ for level, mult in list(enumerate(channel_mult))[::-1]:
277
+ for i in range(self.num_res_blocks[level] + 1):
278
+ ich = input_block_chans.pop()
279
+ layers = [
280
+ ResBlock(
281
+ # ch + ich,
282
+ ch,
283
+ time_embed_dim,
284
+ dropout,
285
+ out_channels=model_channels * mult,
286
+ dims=dims,
287
+ use_checkpoint=use_checkpoint,
288
+ use_scale_shift_norm=use_scale_shift_norm,
289
+ )
290
+ ]
291
+ ch = model_channels * mult
292
+ if ds in attention_resolutions:
293
+ if num_head_channels == -1:
294
+ dim_head = ch // num_heads
295
+ else:
296
+ num_heads = ch // num_head_channels
297
+ dim_head = num_head_channels
298
+ if legacy:
299
+ #num_heads = 1
300
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
301
+ if exists(disable_self_attentions):
302
+ disabled_sa = disable_self_attentions[level]
303
+ else:
304
+ disabled_sa = False
305
+
306
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
307
+ layers.append(
308
+ AttentionBlock(
309
+ ch,
310
+ use_checkpoint=use_checkpoint,
311
+ num_heads=num_heads_upsample,
312
+ num_head_channels=dim_head,
313
+ use_new_attention_order=use_new_attention_order,
314
+ ) if not use_spatial_transformer else SpatialTransformer(
315
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
316
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
317
+ use_checkpoint=use_checkpoint
318
+ )
319
+ )
320
+ if level and i == self.num_res_blocks[level]:
321
+ out_ch = ch
322
+ layers.append(
323
+ ResBlock(
324
+ ch,
325
+ time_embed_dim,
326
+ dropout,
327
+ out_channels=out_ch,
328
+ dims=dims,
329
+ use_checkpoint=use_checkpoint,
330
+ use_scale_shift_norm=use_scale_shift_norm,
331
+ # up=True,
332
+ )
333
+ if resblock_updown
334
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
335
+ )
336
+ ds //= 2
337
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
338
+ self._feature_size += ch
339
+
340
+ self.out = nn.Sequential(
341
+ normalization(ch),
342
+ nn.SiLU(),
343
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
344
+ )
345
+ if self.predict_codebook_ids:
346
+ self.id_predictor = nn.Sequential(
347
+ normalization(ch),
348
+ conv_nd(dims, model_channels, n_embed, 1),
349
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
350
+ )
351
+ # self.input_hint_block = TimestepEmbedSequential(
352
+ # conv_nd(dims, hint_in_channels, 128, 3, padding=1),
353
+ # nn.SiLU(),
354
+ # conv_nd(dims, 128, 128, 3, padding=1),
355
+ # nn.SiLU(),
356
+ # conv_nd(dims, 128, 256, 3, padding=1),
357
+ # nn.SiLU(),
358
+ # conv_nd(dims, 256, 256, 3, padding=1),
359
+ # nn.SiLU(),
360
+ # zero_module(conv_nd(dims, 256, hint_out_channels, 3, padding=1))
361
+ # )
362
+ self.context_proj = nn.Linear(context_dim, 2*model_channels)
363
+ self.hint_converter = TimestepEmbedSequential(
364
+ SpatialTransformer(
365
+ model_channels, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
366
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
367
+ use_checkpoint=use_checkpoint
368
+ ),
369
+ SpatialTransformer(
370
+ model_channels, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
371
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
372
+ use_checkpoint=use_checkpoint
373
+ ),
374
+ SpatialTransformer(
375
+ model_channels, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
376
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
377
+ use_checkpoint=use_checkpoint
378
+ )
379
+ )
380
+
381
+ def convert_to_fp16(self):
382
+ """
383
+ Convert the torso of the model to float16.
384
+ """
385
+ self.input_blocks.apply(convert_module_to_f16)
386
+ self.middle_block.apply(convert_module_to_f16)
387
+ self.output_blocks.apply(convert_module_to_f16)
388
+
389
+ def convert_to_fp32(self):
390
+ """
391
+ Convert the torso of the model to float32.
392
+ """
393
+ self.input_blocks.apply(convert_module_to_f32)
394
+ self.middle_block.apply(convert_module_to_f32)
395
+ self.output_blocks.apply(convert_module_to_f32)
396
+
397
+ def forward(self, x, hint, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
398
+ hs = []
399
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
400
+ emb = self.time_embed(t_emb)
401
+ # guided_hint = self.input_hint_block(hint, emb, context)
402
+ hint = self.hint_converter(hint)
403
+ context = self.context_proj(context).unsqueeze(-1)
404
+ scale, shift = torch.chunk(context, 2, dim = 1)
405
+ hint = hint*(1+scale)+shift
406
+ h = x.type(self.dtype)
407
+ flag=0
408
+ for module in self.input_blocks:
409
+ if flag==0:
410
+ # h = module(h, emb, context, control.pop(0))
411
+ # h = module(h, emb, context)
412
+ h = module(h, emb)
413
+ h += hint
414
+ flag=1
415
+ else:
416
+ # h = module(h, emb, context, control.pop(0))
417
+ # h = module(h, emb, context)
418
+ h = module(h, emb)
419
+ hs.append(h)
420
+ # h = self.middle_block(h, emb, context, control.pop(0))
421
+ # h = self.middle_block(h, emb, context)
422
+ h = self.middle_block(h, emb)
423
+
424
+ for i, module in enumerate(self.output_blocks):
425
+ # h = torch.cat([h, hs.pop()], dim=1)
426
+ # h = module(h, emb, context, control.pop(0))
427
+ # h = module(h, emb, context)
428
+ h = module(h, emb)
429
+
430
+ h = h.type(x.dtype)
431
+ return self.out(h)
432
+
433
+ class ReferenceNet(ControlledUnetModel):
434
+ def forward(self, x, timesteps=None, context=None, only_mid_control=False, **kwargs):
435
+ hs = []
436
+ control = []
437
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
438
+ emb = self.time_embed(t_emb)
439
+ h = x.type(self.dtype)
440
+ for module in self.input_blocks:
441
+ h,refer = module(h, emb, context,return_refer=True)
442
+ hs.append(h)
443
+ control.append(refer)
444
+ h,refer = self.middle_block(h, emb, context,return_refer=True)
445
+ control.append(refer)
446
+
447
+ for i, module in enumerate(self.output_blocks):
448
+ h = torch.cat([h, hs.pop()], dim=1)
449
+ h,refer = module(h, emb, context, return_refer=True)
450
+ control.append(refer)
451
+ h = h.type(x.dtype)
452
+ # h = self.out(h)
453
+ return control
454
+
455
+ class ControlNet(nn.Module):
456
+ def __init__(
457
+ self,
458
+ image_size,
459
+ in_channels,
460
+ model_channels,
461
+ hint_channels,
462
+ num_res_blocks,
463
+ attention_resolutions,
464
+ dropout=0,
465
+ channel_mult=(1, 2, 4, 8),
466
+ conv_resample=True,
467
+ dims=1,
468
+ use_checkpoint=False,
469
+ use_fp16=False,
470
+ num_heads=-1,
471
+ num_head_channels=-1,
472
+ num_heads_upsample=-1,
473
+ use_scale_shift_norm=False,
474
+ resblock_updown=False,
475
+ use_new_attention_order=False,
476
+ use_spatial_transformer=False, # custom transformer support
477
+ transformer_depth=1, # custom transformer support
478
+ context_dim=None, # custom transformer support
479
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
480
+ legacy=True,
481
+ disable_self_attentions=None,
482
+ num_attention_blocks=None,
483
+ disable_middle_self_attn=False,
484
+ use_linear_in_transformer=False,
485
+ ):
486
+ super().__init__()
487
+ if use_spatial_transformer:
488
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
489
+
490
+ if context_dim is not None:
491
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
492
+ from omegaconf.listconfig import ListConfig
493
+ if type(context_dim) == ListConfig:
494
+ context_dim = list(context_dim)
495
+
496
+ if num_heads_upsample == -1:
497
+ num_heads_upsample = num_heads
498
+
499
+ if num_heads == -1:
500
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
501
+
502
+ if num_head_channels == -1:
503
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
504
+
505
+ self.dims = dims
506
+ self.image_size = image_size
507
+ self.in_channels = in_channels
508
+ self.model_channels = model_channels
509
+ if isinstance(num_res_blocks, int):
510
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
511
+ else:
512
+ if len(num_res_blocks) != len(channel_mult):
513
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
514
+ "as a list/tuple (per-level) with the same length as channel_mult")
515
+ self.num_res_blocks = num_res_blocks
516
+ if disable_self_attentions is not None:
517
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
518
+ assert len(disable_self_attentions) == len(channel_mult)
519
+ if num_attention_blocks is not None:
520
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
521
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
522
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
523
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
524
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
525
+ f"attention will still not be set.")
526
+
527
+ self.attention_resolutions = attention_resolutions
528
+ self.dropout = dropout
529
+ self.channel_mult = channel_mult
530
+ self.conv_resample = conv_resample
531
+ self.use_checkpoint = use_checkpoint
532
+ self.dtype = th.float16 if use_fp16 else th.float32
533
+ self.num_heads = num_heads
534
+ self.num_head_channels = num_head_channels
535
+ self.num_heads_upsample = num_heads_upsample
536
+ self.predict_codebook_ids = n_embed is not None
537
+
538
+ time_embed_dim = model_channels * 4
539
+ self.time_embed = nn.Sequential(
540
+ linear(model_channels, time_embed_dim),
541
+ nn.SiLU(),
542
+ linear(time_embed_dim, time_embed_dim),
543
+ )
544
+
545
+ self.input_blocks = nn.ModuleList(
546
+ [
547
+ TimestepEmbedSequential(
548
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
549
+ )
550
+ ]
551
+ )
552
+ self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
553
+
554
+ self.input_hint_block = TimestepEmbedSequential(
555
+ conv_nd(dims, hint_channels, 16, 3, padding=1),
556
+ nn.SiLU(),
557
+ conv_nd(dims, 16, 16, 3, padding=1),
558
+ nn.SiLU(),
559
+ conv_nd(dims, 16, 32, 3, padding=1),
560
+ nn.SiLU(),
561
+ conv_nd(dims, 32, 32, 3, padding=1),
562
+ nn.SiLU(),
563
+ conv_nd(dims, 32, 96, 3, padding=1),
564
+ nn.SiLU(),
565
+ conv_nd(dims, 96, 96, 3, padding=1),
566
+ nn.SiLU(),
567
+ conv_nd(dims, 96, 256, 3, padding=1),
568
+ nn.SiLU(),
569
+ zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
570
+ )
571
+
572
+ self._feature_size = model_channels
573
+ input_block_chans = [model_channels]
574
+ ch = model_channels
575
+ ds = 1
576
+ for level, mult in enumerate(channel_mult):
577
+ for nr in range(self.num_res_blocks[level]):
578
+ layers = [
579
+ ResBlock(
580
+ ch,
581
+ time_embed_dim,
582
+ dropout,
583
+ out_channels=mult * model_channels,
584
+ dims=dims,
585
+ use_checkpoint=use_checkpoint,
586
+ use_scale_shift_norm=use_scale_shift_norm,
587
+ )
588
+ ]
589
+ ch = mult * model_channels
590
+ if ds in attention_resolutions:
591
+ if num_head_channels == -1:
592
+ dim_head = ch // num_heads
593
+ else:
594
+ num_heads = ch // num_head_channels
595
+ dim_head = num_head_channels
596
+ if legacy:
597
+ # num_heads = 1
598
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
599
+ if exists(disable_self_attentions):
600
+ disabled_sa = disable_self_attentions[level]
601
+ else:
602
+ disabled_sa = False
603
+
604
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
605
+ layers.append(
606
+ AttentionBlock(
607
+ ch,
608
+ use_checkpoint=use_checkpoint,
609
+ num_heads=num_heads,
610
+ num_head_channels=dim_head,
611
+ use_new_attention_order=use_new_attention_order,
612
+ ) if not use_spatial_transformer else SpatialTransformer(
613
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
614
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
615
+ use_checkpoint=use_checkpoint
616
+ )
617
+ )
618
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
619
+ self.zero_convs.append(self.make_zero_conv(ch))
620
+ self._feature_size += ch
621
+ input_block_chans.append(ch)
622
+ if level != len(channel_mult) - 1:
623
+ out_ch = ch
624
+ self.input_blocks.append(
625
+ TimestepEmbedSequential(
626
+ ResBlock(
627
+ ch,
628
+ time_embed_dim,
629
+ dropout,
630
+ out_channels=out_ch,
631
+ dims=dims,
632
+ use_checkpoint=use_checkpoint,
633
+ use_scale_shift_norm=use_scale_shift_norm,
634
+ down=True,
635
+ )
636
+ if resblock_updown
637
+ else Downsample(
638
+ ch, conv_resample, dims=dims, out_channels=out_ch
639
+ )
640
+ )
641
+ )
642
+ ch = out_ch
643
+ input_block_chans.append(ch)
644
+ self.zero_convs.append(self.make_zero_conv(ch))
645
+ ds *= 2
646
+ self._feature_size += ch
647
+
648
+ if num_head_channels == -1:
649
+ dim_head = ch // num_heads
650
+ else:
651
+ num_heads = ch // num_head_channels
652
+ dim_head = num_head_channels
653
+ if legacy:
654
+ # num_heads = 1
655
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
656
+ self.middle_block = TimestepEmbedSequential(
657
+ ResBlock(
658
+ ch,
659
+ time_embed_dim,
660
+ dropout,
661
+ dims=dims,
662
+ use_checkpoint=use_checkpoint,
663
+ use_scale_shift_norm=use_scale_shift_norm,
664
+ ),
665
+ AttentionBlock(
666
+ ch,
667
+ use_checkpoint=use_checkpoint,
668
+ num_heads=num_heads,
669
+ num_head_channels=dim_head,
670
+ use_new_attention_order=use_new_attention_order,
671
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
672
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
673
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
674
+ use_checkpoint=use_checkpoint
675
+ ),
676
+ ResBlock(
677
+ ch,
678
+ time_embed_dim,
679
+ dropout,
680
+ dims=dims,
681
+ use_checkpoint=use_checkpoint,
682
+ use_scale_shift_norm=use_scale_shift_norm,
683
+ ),
684
+ )
685
+ self.middle_block_out = self.make_zero_conv(ch)
686
+ self._feature_size += ch
687
+
688
+ def make_zero_conv(self, channels):
689
+ return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
690
+
691
+ def forward(self, x, hint, timesteps, context, **kwargs):
692
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
693
+ emb = self.time_embed(t_emb)
694
+
695
+ guided_hint = self.input_hint_block(hint, emb, context)
696
+
697
+ outs = []
698
+
699
+ h = x.type(self.dtype)
700
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
701
+ if guided_hint is not None:
702
+ h = module(h, emb, context)
703
+ h += guided_hint
704
+ guided_hint = None
705
+ else:
706
+ h = module(h, emb, context)
707
+ outs.append(zero_conv(h, emb, context))
708
+
709
+ h = self.middle_block(h, emb, context)
710
+ outs.append(self.middle_block_out(h, emb, context))
711
+
712
+ return outs
713
+ TACOTRON_MEL_MAX = 5.5451774444795624753378569716654
714
+ TACOTRON_MEL_MIN = -16.118095650958319788125940182791
715
+ # TACOTRON_MEL_MIN = -11.512925464970228420089957273422
716
+
717
+ CVEC_MAX = 5.5451774444795624753378569716654
718
+ CVEC_MIN = -5.5451774444795624753378569716654
719
+ def denormalize_tacotron_mel(norm_mel):
720
+ return norm_mel/0.18215
721
+ def normalize_tacotron_mel(mel):
722
+ mel = torch.clamp(mel, min=-TACOTRON_MEL_MAX)
723
+ return mel*0.18215
724
+
725
+ def denormalize_cvec(norm_mel):
726
+ return norm_mel/0.11111
727
+ def normalize_cvec(mel):
728
+ return mel*0.11111
729
+
730
+ class ControlLDM(LatentDiffusion):
731
+
732
+ def __init__(self, refer_config, control_key, only_mid_control, *args, **kwargs):
733
+ super().__init__(*args, **kwargs)
734
+ # self.control_model = instantiate_from_config(control_stage_config)
735
+ # self.refer_model = instantiate_from_config(refer_config)
736
+ self.control_key = control_key
737
+ self.only_mid_control = only_mid_control
738
+ self.control_scales = [1.0] * 13
739
+ self.unconditioned_embedding = nn.Parameter(torch.randn(1,100,1))
740
+ self.unconditioned_cat_embedding = nn.Parameter(torch.randn(1,1024,1))
741
+
742
+ @torch.no_grad()
743
+ def get_input(self, batch, k, bs=None, *args, **kwargs):
744
+ x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
745
+ control = batch[self.control_key]
746
+ if bs is not None:
747
+ control = control[:bs]
748
+ control = control.to(self.device)
749
+ # control = einops.rearrange(control, 'b h w c -> b c h w')
750
+ control = control.to(memory_format=torch.contiguous_format).float()
751
+ # control = normalize_cvec(control)
752
+ c = normalize_tacotron_mel(c)
753
+ x = normalize_tacotron_mel(x)
754
+
755
+ return x, dict(c_crossattn=[c], c_concat=[control])
756
+
757
+ def apply_model(self, x_noisy, t, cond, *args, **kwargs):
758
+ assert isinstance(cond, dict)
759
+ diffusion_model = self.model.diffusion_model
760
+
761
+ cond_txt = torch.cat(cond['c_crossattn'], 1)
762
+
763
+ if cond['c_concat'] is None:
764
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
765
+ else:
766
+ # control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
767
+ # control = [c * scale for c, scale in zip(control, self.control_scales)]
768
+ # control = self.refer_model(x=torch.cat(cond['c_refer'], 1), timesteps=t, context=cond_txt)
769
+ control=[]
770
+ eps = diffusion_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
771
+
772
+ return eps
773
+
774
+ def get_unconditional_conditioning(self, cross, cat):
775
+ return cross,\
776
+ self.unconditioned_cat_embedding.repeat(cat.shape[0], 1, cat.shape[-1]).to(self.device)
777
+ # return self.unconditioned_embedding.repeat(cross.shape[0], 1, cross.shape[-1]).to(self.device), \
778
+ # self.unconditioned_cat_embedding.repeat(cat.shape[0], 1, cat.shape[-1]).to(self.device)
779
+
780
+ @torch.no_grad()
781
+ def log_images(self, batch, N=1, n_row=2, sample=True, ddim_steps=50, ddim_eta=0.0, return_keys=None,
782
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
783
+ plot_diffusion_rows=False, unconditional_guidance_scale=1.0, unconditional_guidance_label=None,
784
+ use_ema_scope=True,
785
+ **kwargs):
786
+ use_ddim = ddim_steps is not None
787
+
788
+ log = dict()
789
+ z, c = self.get_input(batch, self.first_stage_key, bs=N)
790
+ c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
791
+ N = min(z.shape[0], N)
792
+ n_row = min(z.shape[0], n_row)
793
+ # log["reconstruction"] = self.decode_first_stage(z)
794
+ log["control"] = denormalize_cvec(c_cat)
795
+ log["conditioning"] = batch[self.cond_stage_key]
796
+
797
+ if plot_diffusion_rows:
798
+ # get diffusion row
799
+ diffusion_row = list()
800
+ z_start = z[:n_row]
801
+ for t in range(self.num_timesteps):
802
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
803
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
804
+ t = t.to(self.device).long()
805
+ noise = torch.randn_like(z_start)
806
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
807
+ diffusion_row.append(self.decode_first_stage(z_noisy))
808
+
809
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
810
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
811
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
812
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
813
+ log["diffusion_row"] = diffusion_grid
814
+
815
+ if sample:
816
+ # get denoise row
817
+ c_refer = c
818
+ # c = self.get_learned_conditioning(c)
819
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], 'c_refer':[c_refer]},
820
+ batch_size=N, ddim=use_ddim,
821
+ ddim_steps=ddim_steps, eta=ddim_eta)
822
+ # x_samples = self.decode_first_stage(samples)
823
+ log["samples"] = samples
824
+ if plot_denoise_rows:
825
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
826
+ log["denoise_row"] = denoise_grid
827
+
828
+ if unconditional_guidance_scale > 1.0:
829
+ uc_cross, uc_cat = self.get_unconditional_conditioning(c, c_cat)
830
+ c_refer = c
831
+ uc_refer = uc_cross
832
+ c = self.get_learned_conditioning(c)
833
+ uc_cross = self.get_learned_conditioning(uc_cross)
834
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross], 'c_refer': [uc_refer]}
835
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], 'c_refer':[c_refer]},
836
+ batch_size=N, ddim=use_ddim,
837
+ ddim_steps=ddim_steps, eta=ddim_eta,
838
+ unconditional_guidance_scale=unconditional_guidance_scale,
839
+ unconditional_conditioning=uc_full,
840
+ )
841
+ # x_samples_cfg = self.decode_first_stage(samples_cfg)
842
+ x_samples_cfg = samples_cfg
843
+ log['cfg_scale'] = unconditional_guidance_scale
844
+ log["samples_cfg"] = x_samples_cfg
845
+
846
+ return log
847
+
848
+ @torch.no_grad()
849
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
850
+ ddim_sampler = DDIMSampler(self)
851
+ b, c, t = cond["c_concat"][0].shape
852
+ shape = (self.channels, t)
853
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
854
+ return samples, intermediates
855
+
856
+ def configure_optimizers(self):
857
+ lr = self.learning_rate
858
+ params = list(self.control_model.parameters())
859
+ if not self.sd_locked:
860
+ params += list(self.model.diffusion_model.output_blocks.parameters())
861
+ params += list(self.model.diffusion_model.out.parameters())
862
+ opt = torch.optim.AdamW(params, lr=lr)
863
+ return opt
864
+
865
+ def low_vram_shift(self, is_diffusing):
866
+ if is_diffusing:
867
+ self.model = self.model.cuda()
868
+ self.control_model = self.control_model.cuda()
869
+ self.first_stage_model = self.first_stage_model.cpu()
870
+ self.cond_stage_model = self.cond_stage_model.cpu()
871
+ else:
872
+ self.model = self.model.cpu()
873
+ self.control_model = self.control_model.cpu()
874
+ self.first_stage_model = self.first_stage_model.cuda()
875
+ self.cond_stage_model = self.cond_stage_model.cuda()
ttts/AA_diffusion_deprecated/cldm/cond_emb.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLIP Model
2
+
3
+ Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ """
5
+ import copy
6
+ import logging
7
+ import math
8
+ from dataclasses import dataclass
9
+ from typing import Any, Dict, Optional, Tuple, Union
10
+
11
+ import numpy as np
12
+ import torch
13
+ import torch.nn.functional as F
14
+ from torch import nn
15
+ from torch.utils.checkpoint import checkpoint
16
+ from functools import partial
17
+
18
+ # from .hf_model import HFTextEncoder
19
+ from .modified_resnet import ModifiedResNet
20
+ from .timm_model import TimmModel
21
+ from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer,\
22
+ text_global_pool
23
+ from .utils import to_2tuple
24
+
25
+
26
+ @dataclass
27
+ class CLIPVisionCfg:
28
+ layers: Union[Tuple[int, int, int, int], int] = 12
29
+ width: int = 768
30
+ head_width: int = 64
31
+ mlp_ratio: float = 4.0
32
+ patch_size: int = 16
33
+ image_size: Union[Tuple[int, int], int] = 224
34
+ in_channels: int = 100
35
+
36
+ ls_init_value: Optional[float] = None # layer scale initial value
37
+ patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
38
+ attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer (overrides pool_type)
39
+ attn_pooler_queries: int = 256 # n_queries for attentional pooler
40
+ attn_pooler_heads: int = 8 # n heads for attentional_pooling
41
+ no_ln_pre: bool = False # disable pre transformer LayerNorm
42
+ pos_embed_type: str = 'learnable'
43
+ final_ln_after_pool: bool = False # apply final LayerNorm after pooling
44
+ pool_type: str = 'tok'
45
+ output_tokens: bool = False
46
+ act_kwargs: Optional[dict] = None
47
+ norm_kwargs: Optional[dict] = None
48
+
49
+ timm_model_name: Optional[str] = None # a valid model name overrides layers, width, patch_size
50
+ timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
51
+ timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
52
+ timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
53
+ timm_proj_bias: bool = False # enable bias final projection
54
+ timm_drop: float = 0. # head dropout
55
+ timm_drop_path: Optional[float] = None # backbone stochastic depth
56
+
57
+ def get_cast_dtype(precision: str):
58
+ cast_dtype = None
59
+ if precision == 'bf16':
60
+ cast_dtype = torch.bfloat16
61
+ elif precision == 'fp16':
62
+ cast_dtype = torch.float16
63
+ return cast_dtype
64
+
65
+
66
+ def get_input_dtype(precision: str):
67
+ input_dtype = None
68
+ if precision in ('bf16', 'pure_bf16'):
69
+ input_dtype = torch.bfloat16
70
+ elif precision in ('fp16', 'pure_fp16'):
71
+ input_dtype = torch.float16
72
+ return input_dtype
73
+
74
+
75
+ def _build_vision_tower(
76
+ embed_dim: int,
77
+ vision_cfg: CLIPVisionCfg,
78
+ quick_gelu: bool = False,
79
+ cast_dtype: Optional[torch.dtype] = None
80
+ ):
81
+ if isinstance(vision_cfg, dict):
82
+ vision_cfg = CLIPVisionCfg(**vision_cfg)
83
+
84
+ # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
85
+ # memory efficient in recent PyTorch releases (>= 1.10).
86
+ # NOTE: timm models always use native GELU regardless of quick_gelu flag.
87
+ act_layer = QuickGELU if quick_gelu else nn.GELU
88
+
89
+ if vision_cfg.timm_model_name:
90
+ visual = TimmModel(
91
+ vision_cfg.timm_model_name,
92
+ pretrained=vision_cfg.timm_model_pretrained,
93
+ pool=vision_cfg.timm_pool,
94
+ proj=vision_cfg.timm_proj,
95
+ proj_bias=vision_cfg.timm_proj_bias,
96
+ drop=vision_cfg.timm_drop,
97
+ drop_path=vision_cfg.timm_drop_path,
98
+ patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None,
99
+ embed_dim=embed_dim,
100
+ image_size=vision_cfg.image_size,
101
+ )
102
+ elif isinstance(vision_cfg.layers, (tuple, list)):
103
+ vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
104
+ visual = ModifiedResNet(
105
+ layers=vision_cfg.layers,
106
+ output_dim=embed_dim,
107
+ heads=vision_heads,
108
+ image_size=vision_cfg.image_size,
109
+ width=vision_cfg.width,
110
+ )
111
+ else:
112
+ vision_heads = vision_cfg.width // vision_cfg.head_width
113
+ norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
114
+ if vision_cfg.norm_kwargs:
115
+ norm_layer = partial(norm_layer, **vision_cfg.norm_kwargs)
116
+ if vision_cfg.act_kwargs is not None:
117
+ act_layer = partial(act_layer, **vision_cfg.act_kwargs)
118
+
119
+ visual = VisionTransformer(
120
+ image_size=vision_cfg.image_size,
121
+ patch_size=vision_cfg.patch_size,
122
+ width=vision_cfg.width,
123
+ layers=vision_cfg.layers,
124
+ heads=vision_heads,
125
+ in_channels=vision_cfg.in_channels,
126
+ mlp_ratio=vision_cfg.mlp_ratio,
127
+ ls_init_value=vision_cfg.ls_init_value,
128
+ patch_dropout=vision_cfg.patch_dropout,
129
+ attentional_pool=vision_cfg.attentional_pool,
130
+ attn_pooler_queries=vision_cfg.attn_pooler_queries,
131
+ attn_pooler_heads=vision_cfg.attn_pooler_heads,
132
+ pos_embed_type=vision_cfg.pos_embed_type,
133
+ no_ln_pre=vision_cfg.no_ln_pre,
134
+ final_ln_after_pool=vision_cfg.final_ln_after_pool,
135
+ pool_type=vision_cfg.pool_type,
136
+ output_tokens=vision_cfg.output_tokens,
137
+ output_dim=embed_dim,
138
+ act_layer=act_layer,
139
+ norm_layer=norm_layer,
140
+ )
141
+
142
+ return visual
143
+
144
+ class CLIP(nn.Module):
145
+ output_dict: torch.jit.Final[bool]
146
+
147
+ def __init__(
148
+ self,
149
+ embed_dim: int,
150
+ vision_cfg: CLIPVisionCfg,
151
+ quick_gelu: bool = False,
152
+ init_logit_scale: float = np.log(1 / 0.07),
153
+ init_logit_bias: Optional[float] = None,
154
+ cast_dtype: Optional[torch.dtype] = None,
155
+ output_dict: bool = False,
156
+ ):
157
+ super().__init__()
158
+ self.output_dict = output_dict
159
+
160
+ self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
161
+
162
+ # self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
163
+ if init_logit_bias is not None:
164
+ self.logit_bias = nn.Parameter(torch.ones([]) * init_logit_bias)
165
+ else:
166
+ self.logit_bias = None
167
+
168
+ def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
169
+ # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
170
+ self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
171
+
172
+ @torch.jit.ignore
173
+ def set_grad_checkpointing(self, enable=True):
174
+ self.visual.set_grad_checkpointing(enable)
175
+ self.transformer.grad_checkpointing = enable
176
+
177
+ def encode_image(self, image, normalize: bool = False):
178
+ features = self.visual(image)
179
+ return F.normalize(features, dim=-1) if normalize else features
180
+
181
+ def forward(
182
+ self,
183
+ image: Optional[torch.Tensor] = None,
184
+ ):
185
+ image_features = self.encode_image(image, normalize=True) if image is not None else None
186
+ return image_features
187
+
188
+
189
+ def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
190
+ """Convert applicable model parameters to low-precision (bf16 or fp16)"""
191
+
192
+ def _convert_weights(l):
193
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
194
+ l.weight.data = l.weight.data.to(dtype)
195
+ if l.bias is not None:
196
+ l.bias.data = l.bias.data.to(dtype)
197
+
198
+ if isinstance(l, (nn.MultiheadAttention, Attention)):
199
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
200
+ tensor = getattr(l, attr)
201
+ if tensor is not None:
202
+ tensor.data = tensor.data.to(dtype)
203
+
204
+ if isinstance(l, (CLIP, TextTransformer)):
205
+ # convert text nn.Parameter projections
206
+ attr = getattr(l, "text_projection", None)
207
+ if attr is not None:
208
+ attr.data = attr.data.to(dtype)
209
+
210
+ if isinstance(l, VisionTransformer):
211
+ # convert vision nn.Parameter projections
212
+ attr = getattr(l, "proj", None)
213
+ if attr is not None:
214
+ attr.data = attr.data.to(dtype)
215
+
216
+ model.apply(_convert_weights)
217
+
218
+
219
+ convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
220
+
221
+
222
+ # used to maintain checkpoint compatibility
223
+ def convert_to_custom_text_state_dict(state_dict: dict):
224
+ if 'text_projection' in state_dict:
225
+ # old format state_dict, move text tower -> .text
226
+ new_state_dict = {}
227
+ for k, v in state_dict.items():
228
+ if any(k.startswith(p) for p in (
229
+ 'text_projection',
230
+ 'positional_embedding',
231
+ 'token_embedding',
232
+ 'transformer',
233
+ 'ln_final',
234
+ )):
235
+ k = 'text.' + k
236
+ new_state_dict[k] = v
237
+ return new_state_dict
238
+ return state_dict
239
+
240
+
241
+ def build_model_from_openai_state_dict(
242
+ state_dict: dict,
243
+ quick_gelu=True,
244
+ cast_dtype=torch.float16,
245
+ ):
246
+ vit = "visual.proj" in state_dict
247
+
248
+ if vit:
249
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
250
+ vision_layers = len(
251
+ [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
252
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
253
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
254
+ image_size = vision_patch_size * grid_size
255
+ else:
256
+ counts: list = [
257
+ len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
258
+ vision_layers = tuple(counts)
259
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
260
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
261
+ vision_patch_size = None
262
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
263
+ image_size = output_width * 32
264
+
265
+ embed_dim = state_dict["text_projection"].shape[1]
266
+ context_length = state_dict["positional_embedding"].shape[0]
267
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
268
+ transformer_width = state_dict["ln_final.weight"].shape[0]
269
+ transformer_heads = transformer_width // 64
270
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
271
+
272
+ vision_cfg = CLIPVisionCfg(
273
+ layers=vision_layers,
274
+ width=vision_width,
275
+ patch_size=vision_patch_size,
276
+ image_size=image_size,
277
+ )
278
+ model = CLIP(
279
+ embed_dim,
280
+ vision_cfg=vision_cfg,
281
+ quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
282
+ cast_dtype=cast_dtype,
283
+ )
284
+
285
+ for key in ["input_resolution", "context_length", "vocab_size"]:
286
+ state_dict.pop(key, None)
287
+ convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
288
+ model.load_state_dict(state_dict)
289
+ return model.eval()
290
+
291
+
292
+ def trace_model(model, batch_size=256, device=torch.device('cpu')):
293
+ model.eval()
294
+ image_size = model.visual.image_size
295
+ example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
296
+ example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
297
+ model = torch.jit.trace_module(
298
+ model,
299
+ inputs=dict(
300
+ forward=(example_images, example_text),
301
+ encode_text=(example_text,),
302
+ encode_image=(example_images,)
303
+ ))
304
+ model.visual.image_size = image_size
305
+ return model
306
+
307
+
308
+ def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
309
+ # Rescale the grid of position embeddings when loading from state_dict
310
+ old_pos_embed = state_dict.get('visual.positional_embedding', None)
311
+ if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
312
+ return
313
+ grid_size = to_2tuple(model.visual.grid_size)
314
+ extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
315
+ new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
316
+ if new_seq_len == old_pos_embed.shape[0]:
317
+ return
318
+
319
+ if extra_tokens:
320
+ pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
321
+ else:
322
+ pos_emb_tok, pos_emb_img = None, old_pos_embed
323
+ old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
324
+
325
+ logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
326
+ pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
327
+ pos_emb_img = F.interpolate(
328
+ pos_emb_img,
329
+ size=grid_size,
330
+ mode=interpolation,
331
+ antialias=antialias,
332
+ align_corners=False,
333
+ )
334
+ pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
335
+ if pos_emb_tok is not None:
336
+ new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
337
+ else:
338
+ new_pos_embed = pos_emb_img
339
+ state_dict['visual.positional_embedding'] = new_pos_embed
ttts/AA_diffusion_deprecated/cldm/ddim_hacked.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+
9
+
10
+ class DDIMSampler(object):
11
+ def __init__(self, model, schedule="linear", **kwargs):
12
+ super().__init__()
13
+ self.model = model
14
+ self.ddpm_num_timesteps = model.num_timesteps
15
+ self.schedule = schedule
16
+
17
+ def register_buffer(self, name, attr):
18
+ if type(attr) == torch.Tensor:
19
+ if attr.device != torch.device("cuda"):
20
+ attr = attr.to(torch.device("cuda"))
21
+ setattr(self, name, attr)
22
+
23
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
+ alphas_cumprod = self.model.alphas_cumprod
27
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
+
30
+ self.register_buffer('betas', to_torch(self.model.betas))
31
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
+
34
+ # calculations for diffusion q(x_t | x_{t-1}) and others
35
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
+
41
+ # ddim sampling parameters
42
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
+ ddim_timesteps=self.ddim_timesteps,
44
+ eta=ddim_eta,verbose=verbose)
45
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
46
+ self.register_buffer('ddim_alphas', ddim_alphas)
47
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
+
54
+ @torch.no_grad()
55
+ def sample(self,
56
+ S,
57
+ batch_size,
58
+ shape,
59
+ conditioning=None,
60
+ callback=None,
61
+ normals_sequence=None,
62
+ img_callback=None,
63
+ quantize_x0=False,
64
+ eta=0.,
65
+ mask=None,
66
+ x0=None,
67
+ temperature=1.,
68
+ noise_dropout=0.,
69
+ score_corrector=None,
70
+ corrector_kwargs=None,
71
+ verbose=True,
72
+ x_T=None,
73
+ log_every_t=100,
74
+ unconditional_guidance_scale=1.,
75
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
76
+ dynamic_threshold=None,
77
+ ucg_schedule=None,
78
+ **kwargs
79
+ ):
80
+ if conditioning is not None:
81
+ if isinstance(conditioning, dict):
82
+ ctmp = conditioning[list(conditioning.keys())[0]]
83
+ while isinstance(ctmp, list): ctmp = ctmp[0]
84
+ cbs = ctmp.shape[0]
85
+ if cbs != batch_size:
86
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
+
88
+ elif isinstance(conditioning, list):
89
+ for ctmp in conditioning:
90
+ if ctmp.shape[0] != batch_size:
91
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
92
+
93
+ else:
94
+ if conditioning.shape[0] != batch_size:
95
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
96
+
97
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
98
+ # sampling
99
+ C, H, W = shape
100
+ size = (batch_size, C, H, W)
101
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
102
+
103
+ samples, intermediates = self.ddim_sampling(conditioning, size,
104
+ callback=callback,
105
+ img_callback=img_callback,
106
+ quantize_denoised=quantize_x0,
107
+ mask=mask, x0=x0,
108
+ ddim_use_original_steps=False,
109
+ noise_dropout=noise_dropout,
110
+ temperature=temperature,
111
+ score_corrector=score_corrector,
112
+ corrector_kwargs=corrector_kwargs,
113
+ x_T=x_T,
114
+ log_every_t=log_every_t,
115
+ unconditional_guidance_scale=unconditional_guidance_scale,
116
+ unconditional_conditioning=unconditional_conditioning,
117
+ dynamic_threshold=dynamic_threshold,
118
+ ucg_schedule=ucg_schedule
119
+ )
120
+ return samples, intermediates
121
+
122
+ @torch.no_grad()
123
+ def ddim_sampling(self, cond, shape,
124
+ x_T=None, ddim_use_original_steps=False,
125
+ callback=None, timesteps=None, quantize_denoised=False,
126
+ mask=None, x0=None, img_callback=None, log_every_t=100,
127
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
128
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
129
+ ucg_schedule=None):
130
+ device = self.model.betas.device
131
+ b = shape[0]
132
+ if x_T is None:
133
+ img = torch.randn(shape, device=device)
134
+ else:
135
+ img = x_T
136
+
137
+ if timesteps is None:
138
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
139
+ elif timesteps is not None and not ddim_use_original_steps:
140
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
141
+ timesteps = self.ddim_timesteps[:subset_end]
142
+
143
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
144
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
145
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
146
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
147
+
148
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
149
+
150
+ for i, step in enumerate(iterator):
151
+ index = total_steps - i - 1
152
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
153
+
154
+ if mask is not None:
155
+ assert x0 is not None
156
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
157
+ img = img_orig * mask + (1. - mask) * img
158
+
159
+ if ucg_schedule is not None:
160
+ assert len(ucg_schedule) == len(time_range)
161
+ unconditional_guidance_scale = ucg_schedule[i]
162
+
163
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
164
+ quantize_denoised=quantize_denoised, temperature=temperature,
165
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
166
+ corrector_kwargs=corrector_kwargs,
167
+ unconditional_guidance_scale=unconditional_guidance_scale,
168
+ unconditional_conditioning=unconditional_conditioning,
169
+ dynamic_threshold=dynamic_threshold)
170
+ img, pred_x0 = outs
171
+ if callback: callback(i)
172
+ if img_callback: img_callback(pred_x0, i)
173
+
174
+ if index % log_every_t == 0 or index == total_steps - 1:
175
+ intermediates['x_inter'].append(img)
176
+ intermediates['pred_x0'].append(pred_x0)
177
+
178
+ return img, intermediates
179
+
180
+ @torch.no_grad()
181
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
182
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
183
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
184
+ dynamic_threshold=None):
185
+ b, *_, device = *x.shape, x.device
186
+
187
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
+ model_output = self.model.apply_model(x, t, c)
189
+ else:
190
+ model_t = self.model.apply_model(x, t, c)
191
+ model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
192
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
193
+
194
+ if self.model.parameterization == "v":
195
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
196
+ else:
197
+ e_t = model_output
198
+
199
+ if score_corrector is not None:
200
+ assert self.model.parameterization == "eps", 'not implemented'
201
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
202
+
203
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
204
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
205
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
206
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
207
+ # select parameters corresponding to the currently considered timestep
208
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
209
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
210
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
211
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
212
+
213
+ # current prediction for x_0
214
+ if self.model.parameterization != "v":
215
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
216
+ else:
217
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
218
+
219
+ if quantize_denoised:
220
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
221
+
222
+ if dynamic_threshold is not None:
223
+ raise NotImplementedError()
224
+
225
+ # direction pointing to x_t
226
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
227
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
228
+ if noise_dropout > 0.:
229
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
230
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
231
+ return x_prev, pred_x0
232
+
233
+ @torch.no_grad()
234
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
235
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
236
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
237
+ num_reference_steps = timesteps.shape[0]
238
+
239
+ assert t_enc <= num_reference_steps
240
+ num_steps = t_enc
241
+
242
+ if use_original_steps:
243
+ alphas_next = self.alphas_cumprod[:num_steps]
244
+ alphas = self.alphas_cumprod_prev[:num_steps]
245
+ else:
246
+ alphas_next = self.ddim_alphas[:num_steps]
247
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
248
+
249
+ x_next = x0
250
+ intermediates = []
251
+ inter_steps = []
252
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
253
+ t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
254
+ if unconditional_guidance_scale == 1.:
255
+ noise_pred = self.model.apply_model(x_next, t, c)
256
+ else:
257
+ assert unconditional_conditioning is not None
258
+ e_t_uncond, noise_pred = torch.chunk(
259
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
260
+ torch.cat((unconditional_conditioning, c))), 2)
261
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
262
+
263
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
264
+ weighted_noise_pred = alphas_next[i].sqrt() * (
265
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
266
+ x_next = xt_weighted + weighted_noise_pred
267
+ if return_intermediates and i % (
268
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
269
+ intermediates.append(x_next)
270
+ inter_steps.append(i)
271
+ elif return_intermediates and i >= num_steps - 2:
272
+ intermediates.append(x_next)
273
+ inter_steps.append(i)
274
+ if callback: callback(i)
275
+
276
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
277
+ if return_intermediates:
278
+ out.update({'intermediates': intermediates})
279
+ return x_next, out
280
+
281
+ @torch.no_grad()
282
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
283
+ # fast, but does not allow for exact reconstruction
284
+ # t serves as an index to gather the correct alphas
285
+ if use_original_steps:
286
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
287
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
288
+ else:
289
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
290
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
291
+
292
+ if noise is None:
293
+ noise = torch.randn_like(x0)
294
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
295
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
296
+
297
+ @torch.no_grad()
298
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
299
+ use_original_steps=False, callback=None):
300
+
301
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
302
+ timesteps = timesteps[:t_start]
303
+
304
+ time_range = np.flip(timesteps)
305
+ total_steps = timesteps.shape[0]
306
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
307
+
308
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
309
+ x_dec = x_latent
310
+ for i, step in enumerate(iterator):
311
+ index = total_steps - i - 1
312
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
313
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
314
+ unconditional_guidance_scale=unconditional_guidance_scale,
315
+ unconditional_conditioning=unconditional_conditioning)
316
+ if callback: callback(i)
317
+ return x_dec
ttts/AA_diffusion_deprecated/cldm/hack.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import einops
3
+
4
+ import ldm.modules.encoders.modules
5
+ import ldm.modules.attention
6
+
7
+ from transformers import logging
8
+ from ldm.modules.attention import default
9
+
10
+
11
+ def disable_verbosity():
12
+ logging.set_verbosity_error()
13
+ print('logging improved.')
14
+ return
15
+
16
+
17
+ def enable_sliced_attention():
18
+ ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
19
+ print('Enabled sliced_attention.')
20
+ return
21
+
22
+
23
+ def hack_everything(clip_skip=0):
24
+ disable_verbosity()
25
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
26
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
27
+ print('Enabled clip hacks.')
28
+ return
29
+
30
+
31
+ # Written by Lvmin
32
+ def _hacked_clip_forward(self, text):
33
+ PAD = self.tokenizer.pad_token_id
34
+ EOS = self.tokenizer.eos_token_id
35
+ BOS = self.tokenizer.bos_token_id
36
+
37
+ def tokenize(t):
38
+ return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
39
+
40
+ def transformer_encode(t):
41
+ if self.clip_skip > 1:
42
+ rt = self.transformer(input_ids=t, output_hidden_states=True)
43
+ return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
44
+ else:
45
+ return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
46
+
47
+ def split(x):
48
+ return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
49
+
50
+ def pad(x, p, i):
51
+ return x[:i] if len(x) >= i else x + [p] * (i - len(x))
52
+
53
+ raw_tokens_list = tokenize(text)
54
+ tokens_list = []
55
+
56
+ for raw_tokens in raw_tokens_list:
57
+ raw_tokens_123 = split(raw_tokens)
58
+ raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
59
+ raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
60
+ tokens_list.append(raw_tokens_123)
61
+
62
+ tokens_list = torch.IntTensor(tokens_list).to(self.device)
63
+
64
+ feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
65
+ y = transformer_encode(feed)
66
+ z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
67
+
68
+ return z
69
+
70
+
71
+ # Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
72
+ def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
73
+ h = self.heads
74
+
75
+ q = self.to_q(x)
76
+ context = default(context, x)
77
+ k = self.to_k(context)
78
+ v = self.to_v(context)
79
+ del context, x
80
+
81
+ q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
82
+
83
+ limit = k.shape[0]
84
+ att_step = 1
85
+ q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
86
+ k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
87
+ v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
88
+
89
+ q_chunks.reverse()
90
+ k_chunks.reverse()
91
+ v_chunks.reverse()
92
+ sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
93
+ del k, q, v
94
+ for i in range(0, limit, att_step):
95
+ q_buffer = q_chunks.pop()
96
+ k_buffer = k_chunks.pop()
97
+ v_buffer = v_chunks.pop()
98
+ sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
99
+
100
+ del k_buffer, q_buffer
101
+ # attention, what we cannot get enough of, by chunks
102
+
103
+ sim_buffer = sim_buffer.softmax(dim=-1)
104
+
105
+ sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
106
+ del v_buffer
107
+ sim[i:i + att_step, :, :] = sim_buffer
108
+
109
+ del sim_buffer
110
+ sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
111
+ return self.to_out(sim)
ttts/AA_diffusion_deprecated/cldm/hf_model.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ huggingface model adapter
2
+
3
+ Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
4
+ """
5
+ import re
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ from torch import TensorType
10
+
11
+ try:
12
+ import transformers
13
+ from transformers import AutoModel, AutoTokenizer, AutoConfig, PretrainedConfig
14
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
15
+ BaseModelOutputWithPoolingAndCrossAttentions
16
+ except ImportError as e:
17
+ transformers = None
18
+
19
+
20
+ class BaseModelOutput:
21
+ pass
22
+
23
+
24
+ class PretrainedConfig:
25
+ pass
26
+
27
+ from .hf_configs import arch_dict
28
+
29
+
30
+ # utils
31
+ def _camel2snake(s):
32
+ return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
33
+
34
+
35
+ # TODO: ?last - for gpt-like models
36
+ _POOLERS = {}
37
+
38
+
39
+ def register_pooler(cls):
40
+ """Decorator registering pooler class"""
41
+ _POOLERS[_camel2snake(cls.__name__)] = cls
42
+ return cls
43
+
44
+
45
+ @register_pooler
46
+ class MeanPooler(nn.Module):
47
+ """Mean pooling"""
48
+
49
+ def forward(self, x: BaseModelOutput, attention_mask: TensorType):
50
+ masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
51
+ return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
52
+
53
+
54
+ @register_pooler
55
+ class MaxPooler(nn.Module):
56
+ """Max pooling"""
57
+
58
+ def forward(self, x: BaseModelOutput, attention_mask: TensorType):
59
+ masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
60
+ return masked_output.max(1).values
61
+
62
+
63
+ @register_pooler
64
+ class ClsPooler(nn.Module):
65
+ """CLS token pooling"""
66
+
67
+ def __init__(self, use_pooler_output=True):
68
+ super().__init__()
69
+ self.cls_token_position = 0
70
+ self.use_pooler_output = use_pooler_output
71
+
72
+ def forward(self, x: BaseModelOutput, attention_mask: TensorType):
73
+ if (self.use_pooler_output and
74
+ isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
75
+ (x.pooler_output is not None)
76
+ ):
77
+ return x.pooler_output
78
+
79
+ return x.last_hidden_state[:, self.cls_token_position, :]
80
+
81
+
82
+ @register_pooler
83
+ class ClsLastHiddenStatePooler(nn.Module):
84
+ """CLS token pooling
85
+ NOTE: this is equivalent to ClsPooler above with use_pooler_output=False
86
+ """
87
+
88
+ def __init__(self):
89
+ super().__init__()
90
+ self.cls_token_position = 0
91
+
92
+ def forward(self, x: BaseModelOutput, attention_mask: TensorType):
93
+ return x.last_hidden_state[:, self.cls_token_position, :]
94
+
95
+
96
+ class HFTextEncoder(nn.Module):
97
+ """HuggingFace model adapter"""
98
+ output_tokens: torch.jit.Final[bool]
99
+
100
+ def __init__(
101
+ self,
102
+ model_name_or_path: str,
103
+ output_dim: int,
104
+ config: PretrainedConfig = None,
105
+ pooler_type: str = None,
106
+ proj_type: str = None,
107
+ pretrained: bool = True,
108
+ output_tokens: bool = False,
109
+ ):
110
+ super().__init__()
111
+ self.output_tokens = output_tokens
112
+ self.output_dim = output_dim
113
+
114
+ # TODO: find better way to get this information
115
+ uses_transformer_pooler = (pooler_type == "cls_pooler")
116
+
117
+ if transformers is None:
118
+ raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
119
+ if config is None:
120
+ self.config = AutoConfig.from_pretrained(model_name_or_path)
121
+ create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
122
+ AutoModel.from_config, self.config)
123
+ # TODO: do all model configs have this attribute? PretrainedConfig does so yes??
124
+ if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
125
+ self.transformer = create_func(model_args)
126
+ self.transformer = self.transformer.encoder
127
+ else:
128
+ self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
129
+ else:
130
+ self.config = config
131
+ self.transformer = AutoModel.from_config(config)
132
+ if pooler_type is None: # get default arch pooler
133
+ pooler_type = (arch_dict[self.config.model_type]["pooler"])
134
+
135
+ # FIXME downstream users of OpenCLIP models use these attr, need to verify valid across all models
136
+ self.vocab_size = getattr(self.config, 'vocab_size', 0)
137
+ self.context_length = getattr(self.config, 'max_position_embeddings', 0)
138
+
139
+ self.pooler = _POOLERS[pooler_type]()
140
+
141
+ d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
142
+ if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
143
+ self.proj = nn.Identity()
144
+ elif proj_type == 'linear':
145
+ self.proj = nn.Linear(d_model, output_dim, bias=False)
146
+ elif proj_type == 'mlp':
147
+ hidden_size = (d_model + output_dim) // 2
148
+ self.proj = nn.Sequential(
149
+ nn.Linear(d_model, hidden_size, bias=False),
150
+ nn.GELU(),
151
+ nn.Linear(hidden_size, output_dim, bias=False),
152
+ )
153
+
154
+ def forward(self, x: TensorType):
155
+ attn_mask = (x != self.config.pad_token_id).long()
156
+ out = self.transformer(input_ids=x, attention_mask=attn_mask)
157
+ pooled_out = self.pooler(out, attn_mask)
158
+ projected = self.proj(pooled_out)
159
+
160
+ seq_len = out.last_hidden_state.shape[1]
161
+ tokens = (
162
+ out.last_hidden_state[:, torch.arange(seq_len) != self.pooler.cls_token_position, :]
163
+ if type(self.pooler) == ClsPooler
164
+ else out.last_hidden_state
165
+ )
166
+
167
+ if self.output_tokens:
168
+ return projected, tokens
169
+ return projected
170
+
171
+ def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
172
+ if not unlocked_layers: # full freezing
173
+ for n, p in self.transformer.named_parameters():
174
+ p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
175
+ return
176
+
177
+ encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
178
+ layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
179
+ print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
180
+ embeddings = getattr(
181
+ self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
182
+ modules = [embeddings, *layer_list][:-unlocked_layers]
183
+ # freeze layers
184
+ for module in modules:
185
+ for n, p in module.named_parameters():
186
+ p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
187
+
188
+ @torch.jit.ignore
189
+ def set_grad_checkpointing(self, enable=True):
190
+ self.transformer.gradient_checkpointing_enable()
191
+
192
+ def init_parameters(self):
193
+ pass
ttts/AA_diffusion_deprecated/cldm/logger.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torchvision
6
+ from PIL import Image
7
+ from pytorch_lightning.callbacks import Callback
8
+ from pytorch_lightning.utilities.distributed import rank_zero_only
9
+
10
+
11
+ class ImageLogger(Callback):
12
+ def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
13
+ rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
14
+ log_images_kwargs=None):
15
+ super().__init__()
16
+ self.rescale = rescale
17
+ self.batch_freq = batch_frequency
18
+ self.max_images = max_images
19
+ if not increase_log_steps:
20
+ self.log_steps = [self.batch_freq]
21
+ self.clamp = clamp
22
+ self.disabled = disabled
23
+ self.log_on_batch_idx = log_on_batch_idx
24
+ self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
25
+ self.log_first_step = log_first_step
26
+
27
+ @rank_zero_only
28
+ def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
29
+ root = os.path.join(save_dir, "image_log", split)
30
+ for k in images:
31
+ grid = torchvision.utils.make_grid(images[k], nrow=4)
32
+ if self.rescale:
33
+ grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
34
+ grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
35
+ grid = grid.numpy()
36
+ grid = (grid * 255).astype(np.uint8)
37
+ filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
38
+ path = os.path.join(root, filename)
39
+ os.makedirs(os.path.split(path)[0], exist_ok=True)
40
+ Image.fromarray(grid).save(path)
41
+
42
+ def log_img(self, pl_module, batch, batch_idx, split="train"):
43
+ check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
44
+ if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
45
+ hasattr(pl_module, "log_images") and
46
+ callable(pl_module.log_images) and
47
+ self.max_images > 0):
48
+ logger = type(pl_module.logger)
49
+
50
+ is_train = pl_module.training
51
+ if is_train:
52
+ pl_module.eval()
53
+
54
+ with torch.no_grad():
55
+ images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
56
+
57
+ for k in images:
58
+ N = min(images[k].shape[0], self.max_images)
59
+ images[k] = images[k][:N]
60
+ if isinstance(images[k], torch.Tensor):
61
+ images[k] = images[k].detach().cpu()
62
+ if self.clamp:
63
+ images[k] = torch.clamp(images[k], -1., 1.)
64
+
65
+ self.log_local(pl_module.logger.save_dir, split, images,
66
+ pl_module.global_step, pl_module.current_epoch, batch_idx)
67
+
68
+ if is_train:
69
+ pl_module.train()
70
+
71
+ def check_frequency(self, check_idx):
72
+ return check_idx % self.batch_freq == 0
73
+
74
+ def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
75
+ if not self.disabled:
76
+ self.log_img(pl_module, batch, batch_idx, split="train")
ttts/AA_diffusion_deprecated/cldm/model.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ from omegaconf import OmegaConf
5
+ from ldm.util import instantiate_from_config
6
+
7
+
8
+ def get_state_dict(d):
9
+ return d.get('state_dict', d)
10
+
11
+
12
+ def load_state_dict(ckpt_path, location='cpu'):
13
+ _, extension = os.path.splitext(ckpt_path)
14
+ if extension.lower() == ".safetensors":
15
+ import safetensors.torch
16
+ state_dict = safetensors.torch.load_file(ckpt_path, device=location)
17
+ else:
18
+ state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
19
+ state_dict = get_state_dict(state_dict)
20
+ print(f'Loaded state_dict from [{ckpt_path}]')
21
+ return state_dict
22
+
23
+
24
+ def create_model(config_path):
25
+ config = OmegaConf.load(config_path)
26
+ model = instantiate_from_config(config.model).cpu()
27
+ print(f'Loaded model config from [{config_path}]')
28
+ return model
ttts/AA_diffusion_deprecated/cldm/modified_resnet.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ from .utils import freeze_batch_norm_2d
8
+
9
+
10
+ class Bottleneck(nn.Module):
11
+ expansion = 4
12
+
13
+ def __init__(self, inplanes, planes, stride=1):
14
+ super().__init__()
15
+
16
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
+ self.bn1 = nn.BatchNorm2d(planes)
19
+ self.act1 = nn.ReLU(inplace=True)
20
+
21
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
+ self.bn2 = nn.BatchNorm2d(planes)
23
+ self.act2 = nn.ReLU(inplace=True)
24
+
25
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
+
27
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
+ self.act3 = nn.ReLU(inplace=True)
30
+
31
+ self.downsample = None
32
+ self.stride = stride
33
+
34
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
+ self.downsample = nn.Sequential(OrderedDict([
37
+ ("-1", nn.AvgPool2d(stride)),
38
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
+ ("1", nn.BatchNorm2d(planes * self.expansion))
40
+ ]))
41
+
42
+ def forward(self, x: torch.Tensor):
43
+ identity = x
44
+
45
+ out = self.act1(self.bn1(self.conv1(x)))
46
+ out = self.act2(self.bn2(self.conv2(out)))
47
+ out = self.avgpool(out)
48
+ out = self.bn3(self.conv3(out))
49
+
50
+ if self.downsample is not None:
51
+ identity = self.downsample(x)
52
+
53
+ out += identity
54
+ out = self.act3(out)
55
+ return out
56
+
57
+
58
+ class AttentionPool2d(nn.Module):
59
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
+ super().__init__()
61
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
63
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
64
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
65
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
+ self.num_heads = num_heads
67
+
68
+ def forward(self, x):
69
+ x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
70
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
+ x, _ = F.multi_head_attention_forward(
73
+ query=x, key=x, value=x,
74
+ embed_dim_to_check=x.shape[-1],
75
+ num_heads=self.num_heads,
76
+ q_proj_weight=self.q_proj.weight,
77
+ k_proj_weight=self.k_proj.weight,
78
+ v_proj_weight=self.v_proj.weight,
79
+ in_proj_weight=None,
80
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
+ bias_k=None,
82
+ bias_v=None,
83
+ add_zero_attn=False,
84
+ dropout_p=0.,
85
+ out_proj_weight=self.c_proj.weight,
86
+ out_proj_bias=self.c_proj.bias,
87
+ use_separate_proj_weight=True,
88
+ training=self.training,
89
+ need_weights=False
90
+ )
91
+
92
+ return x[0]
93
+
94
+
95
+ class ModifiedResNet(nn.Module):
96
+ """
97
+ A ResNet class that is similar to torchvision's but contains the following changes:
98
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
99
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
100
+ - The final pooling layer is a QKV attention instead of an average pool
101
+ """
102
+
103
+ def __init__(self, layers, output_dim, heads, image_size=224, width=64):
104
+ super().__init__()
105
+ self.output_dim = output_dim
106
+ self.image_size = image_size
107
+
108
+ # the 3-layer stem
109
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
110
+ self.bn1 = nn.BatchNorm2d(width // 2)
111
+ self.act1 = nn.ReLU(inplace=True)
112
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
113
+ self.bn2 = nn.BatchNorm2d(width // 2)
114
+ self.act2 = nn.ReLU(inplace=True)
115
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
116
+ self.bn3 = nn.BatchNorm2d(width)
117
+ self.act3 = nn.ReLU(inplace=True)
118
+ self.avgpool = nn.AvgPool2d(2)
119
+
120
+ # residual layers
121
+ self._inplanes = width # this is a *mutable* variable used during construction
122
+ self.layer1 = self._make_layer(width, layers[0])
123
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
124
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
125
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
126
+
127
+ embed_dim = width * 32 # the ResNet feature dimension
128
+ self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
129
+
130
+ self.init_parameters()
131
+
132
+ def _make_layer(self, planes, blocks, stride=1):
133
+ layers = [Bottleneck(self._inplanes, planes, stride)]
134
+
135
+ self._inplanes = planes * Bottleneck.expansion
136
+ for _ in range(1, blocks):
137
+ layers.append(Bottleneck(self._inplanes, planes))
138
+
139
+ return nn.Sequential(*layers)
140
+
141
+ def init_parameters(self):
142
+ if self.attnpool is not None:
143
+ std = self.attnpool.c_proj.in_features ** -0.5
144
+ nn.init.normal_(self.attnpool.q_proj.weight, std=std)
145
+ nn.init.normal_(self.attnpool.k_proj.weight, std=std)
146
+ nn.init.normal_(self.attnpool.v_proj.weight, std=std)
147
+ nn.init.normal_(self.attnpool.c_proj.weight, std=std)
148
+
149
+ for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
150
+ for name, param in resnet_block.named_parameters():
151
+ if name.endswith("bn3.weight"):
152
+ nn.init.zeros_(param)
153
+
154
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
155
+ assert unlocked_groups == 0, 'partial locking not currently supported for this model'
156
+ for param in self.parameters():
157
+ param.requires_grad = False
158
+ if freeze_bn_stats:
159
+ freeze_batch_norm_2d(self)
160
+
161
+ @torch.jit.ignore
162
+ def set_grad_checkpointing(self, enable=True):
163
+ # FIXME support for non-transformer
164
+ pass
165
+
166
+ def stem(self, x):
167
+ x = self.act1(self.bn1(self.conv1(x)))
168
+ x = self.act2(self.bn2(self.conv2(x)))
169
+ x = self.act3(self.bn3(self.conv3(x)))
170
+ x = self.avgpool(x)
171
+ return x
172
+
173
+ def forward(self, x):
174
+ x = self.stem(x)
175
+ x = self.layer1(x)
176
+ x = self.layer2(x)
177
+ x = self.layer3(x)
178
+ x = self.layer4(x)
179
+ x = self.attnpool(x)
180
+
181
+ return x
ttts/AA_diffusion_deprecated/cldm/pos_embed.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ # --------------------------------------------------------
7
+ # Position embedding utils
8
+ # --------------------------------------------------------
9
+
10
+ import numpy as np
11
+
12
+ import torch
13
+
14
+ # --------------------------------------------------------
15
+ # 2D sine-cosine position embedding
16
+ # References:
17
+ # Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
18
+ # MoCo v3: https://github.com/facebookresearch/moco-v3
19
+ # --------------------------------------------------------
20
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
21
+ """
22
+ grid_size: int of the grid height and width
23
+ return:
24
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
25
+ """
26
+ grid_h = np.arange(grid_size, dtype=np.float32)
27
+ grid_w = np.arange(grid_size, dtype=np.float32)
28
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
29
+ grid = np.stack(grid, axis=0)
30
+
31
+ grid = grid.reshape([2, 1, grid_size, grid_size])
32
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
33
+ if cls_token:
34
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
35
+ return pos_embed
36
+
37
+
38
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
39
+ assert embed_dim % 2 == 0
40
+
41
+ # use half of dimensions to encode grid_h
42
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
43
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
44
+
45
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
46
+ return emb
47
+
48
+
49
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
50
+ """
51
+ embed_dim: output dimension for each position
52
+ pos: a list of positions to be encoded: size (M,)
53
+ out: (M, D)
54
+ """
55
+ assert embed_dim % 2 == 0
56
+ omega = np.arange(embed_dim // 2, dtype=float)
57
+ omega /= embed_dim / 2.
58
+ omega = 1. / 10000**omega # (D/2,)
59
+
60
+ pos = pos.reshape(-1) # (M,)
61
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
62
+
63
+ emb_sin = np.sin(out) # (M, D/2)
64
+ emb_cos = np.cos(out) # (M, D/2)
65
+
66
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
67
+ return emb
68
+
69
+
70
+ # --------------------------------------------------------
71
+ # Interpolate position embeddings for high-resolution
72
+ # References:
73
+ # DeiT: https://github.com/facebookresearch/deit
74
+ # --------------------------------------------------------
75
+ def interpolate_pos_embed(model, checkpoint_model):
76
+ if 'pos_embed' in checkpoint_model:
77
+ pos_embed_checkpoint = checkpoint_model['pos_embed']
78
+ embedding_size = pos_embed_checkpoint.shape[-1]
79
+ num_patches = model.patch_embed.num_patches
80
+ num_extra_tokens = model.pos_embed.shape[-2] - num_patches
81
+ # height (== width) for the checkpoint position embedding
82
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
83
+ # height (== width) for the new position embedding
84
+ new_size = int(num_patches ** 0.5)
85
+ # class_token and dist_token are kept unchanged
86
+ if orig_size != new_size:
87
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
88
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
89
+ # only the position tokens are interpolated
90
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
91
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
92
+ pos_tokens = torch.nn.functional.interpolate(
93
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
94
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
95
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
96
+ checkpoint_model['pos_embed'] = new_pos_embed
ttts/AA_diffusion_deprecated/cldm/timm_model.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ timm model adapter
2
+
3
+ Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
4
+ """
5
+ import logging
6
+ from collections import OrderedDict
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ try:
12
+ import timm
13
+ from timm.models.layers import Mlp, to_2tuple
14
+ try:
15
+ # old timm imports < 0.8.1
16
+ from timm.models.layers.attention_pool2d import RotAttentionPool2d
17
+ from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
18
+ except ImportError:
19
+ # new timm imports >= 0.8.1
20
+ from timm.layers import RotAttentionPool2d
21
+ from timm.layers import AttentionPool2d as AbsAttentionPool2d
22
+ except ImportError:
23
+ timm = None
24
+
25
+ from .utils import freeze_batch_norm_2d
26
+
27
+
28
+ class TimmModel(nn.Module):
29
+ """ timm model adapter
30
+ """
31
+
32
+ def __init__(
33
+ self,
34
+ model_name,
35
+ embed_dim,
36
+ image_size=224,
37
+ pool='avg',
38
+ proj='linear',
39
+ proj_bias=False,
40
+ drop=0.,
41
+ drop_path=None,
42
+ patch_drop=None,
43
+ pretrained=False,
44
+ ):
45
+ super().__init__()
46
+ if timm is None:
47
+ raise RuntimeError("Please `pip install timm` to use timm models.")
48
+ self.image_size = to_2tuple(image_size)
49
+
50
+ # setup kwargs that may not be common across all models
51
+ timm_kwargs = {}
52
+ if drop_path is not None:
53
+ timm_kwargs['drop_path_rate'] = drop_path
54
+ if patch_drop is not None:
55
+ timm_kwargs['patch_drop_rate'] = patch_drop
56
+
57
+ custom_pool = pool in ('abs_attn', 'rot_attn')
58
+ if proj:
59
+ assert proj in ("linear", "mlp", "none")
60
+ extra_proj = proj in ("linear", "mlp")
61
+ if not extra_proj and not custom_pool:
62
+ # use network classifier head as projection if no proj specified and no custom pooling used
63
+ # if projection is explicitly set to "none" will be pass through from network trunk
64
+ proj_dim = 0 if proj == 'none' else embed_dim
65
+ self.trunk = timm.create_model(
66
+ model_name,
67
+ num_classes=proj_dim,
68
+ global_pool=pool,
69
+ pretrained=pretrained,
70
+ **timm_kwargs,
71
+ )
72
+ prev_chs = embed_dim
73
+ else:
74
+ self.trunk = timm.create_model(
75
+ model_name,
76
+ pretrained=pretrained,
77
+ **timm_kwargs,
78
+ )
79
+ feat_size = self.trunk.default_cfg.get('pool_size', None)
80
+ feature_ndim = 1 if not feat_size else 2
81
+ if custom_pool:
82
+ assert feature_ndim == 2
83
+ # if attn pooling used, remove both classifier and default pool
84
+ self.trunk.reset_classifier(0, global_pool='')
85
+ else:
86
+ # reset global pool if pool config set, otherwise leave as network default
87
+ reset_kwargs = dict(global_pool=pool) if pool else {}
88
+ self.trunk.reset_classifier(0, **reset_kwargs)
89
+ prev_chs = self.trunk.num_features
90
+
91
+ head_layers = OrderedDict()
92
+
93
+ # Add custom pooling to head
94
+ if pool == 'abs_attn':
95
+ head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
96
+ prev_chs = embed_dim
97
+ elif pool == 'rot_attn':
98
+ head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
99
+ prev_chs = embed_dim
100
+
101
+ # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
102
+ if proj == 'linear':
103
+ head_layers['drop'] = nn.Dropout(drop)
104
+ head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
105
+ elif proj == 'mlp':
106
+ head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=(drop, 0), bias=(True, proj_bias))
107
+
108
+ self.head = nn.Sequential(head_layers)
109
+
110
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
111
+ """ lock modules
112
+ Args:
113
+ unlocked_groups (int): leave last n layer groups unlocked (default: 0)
114
+ """
115
+ if not unlocked_groups:
116
+ # lock full model
117
+ for param in self.trunk.parameters():
118
+ param.requires_grad = False
119
+ if freeze_bn_stats:
120
+ freeze_batch_norm_2d(self.trunk)
121
+ else:
122
+ # NOTE: partial freeze requires latest timm (master) branch and is subject to change
123
+ try:
124
+ # FIXME import here until API stable and in an official release
125
+ from timm.models.helpers import group_parameters, group_modules
126
+ except ImportError:
127
+ raise RuntimeError(
128
+ 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
129
+ matcher = self.trunk.group_matcher()
130
+ gparams = group_parameters(self.trunk, matcher)
131
+ max_layer_id = max(gparams.keys())
132
+ max_layer_id = max_layer_id - unlocked_groups
133
+ for group_idx in range(max_layer_id + 1):
134
+ group = gparams[group_idx]
135
+ for param in group:
136
+ self.trunk.get_parameter(param).requires_grad = False
137
+ if freeze_bn_stats:
138
+ gmodules = group_modules(self.trunk, matcher, reverse=True)
139
+ gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
140
+ freeze_batch_norm_2d(self.trunk, gmodules)
141
+
142
+ @torch.jit.ignore
143
+ def set_grad_checkpointing(self, enable=True):
144
+ try:
145
+ self.trunk.set_grad_checkpointing(enable)
146
+ except Exception as e:
147
+ logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
148
+
149
+ def forward(self, x):
150
+ x = self.trunk(x)
151
+ x = self.head(x)
152
+ return x
ttts/AA_diffusion_deprecated/cldm/transformer.py ADDED
@@ -0,0 +1,806 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ import math
3
+ from typing import Callable, Optional, Sequence, Tuple
4
+ from functools import partial
5
+
6
+ import torch
7
+ from torch import nn
8
+ from torch.nn import functional as F
9
+ from torch.utils.checkpoint import checkpoint
10
+
11
+ from .utils import to_2tuple
12
+ from .pos_embed import get_2d_sincos_pos_embed
13
+
14
+
15
+ class LayerNormFp32(nn.LayerNorm):
16
+ """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
17
+
18
+ def forward(self, x: torch.Tensor):
19
+ orig_type = x.dtype
20
+ x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
21
+ return x.to(orig_type)
22
+
23
+
24
+ class LayerNorm(nn.LayerNorm):
25
+ """Subclass torch's LayerNorm (with cast back to input dtype)."""
26
+
27
+ def forward(self, x: torch.Tensor):
28
+ orig_type = x.dtype
29
+ x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
30
+ return x.to(orig_type)
31
+
32
+
33
+ class QuickGELU(nn.Module):
34
+ # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
35
+ def forward(self, x: torch.Tensor):
36
+ return x * torch.sigmoid(1.702 * x)
37
+
38
+
39
+ class LayerScale(nn.Module):
40
+ def __init__(self, dim, init_values=1e-5, inplace=False):
41
+ super().__init__()
42
+ self.inplace = inplace
43
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
44
+
45
+ def forward(self, x):
46
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
47
+
48
+
49
+ class PatchDropout(nn.Module):
50
+ """
51
+ https://arxiv.org/abs/2212.00794
52
+ """
53
+
54
+ def __init__(self, prob, exclude_first_token=True):
55
+ super().__init__()
56
+ assert 0 <= prob < 1.
57
+ self.prob = prob
58
+ self.exclude_first_token = exclude_first_token # exclude CLS token
59
+
60
+ def forward(self, x):
61
+ if not self.training or self.prob == 0.:
62
+ return x
63
+
64
+ if self.exclude_first_token:
65
+ cls_tokens, x = x[:, :1], x[:, 1:]
66
+ else:
67
+ cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
68
+
69
+ batch = x.size()[0]
70
+ num_tokens = x.size()[1]
71
+
72
+ batch_indices = torch.arange(batch)
73
+ batch_indices = batch_indices[..., None]
74
+
75
+ keep_prob = 1 - self.prob
76
+ num_patches_keep = max(1, int(num_tokens * keep_prob))
77
+
78
+ rand = torch.randn(batch, num_tokens)
79
+ patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
80
+
81
+ x = x[batch_indices, patch_indices_keep]
82
+
83
+ if self.exclude_first_token:
84
+ x = torch.cat((cls_tokens, x), dim=1)
85
+
86
+ return x
87
+
88
+
89
+ class Attention(nn.Module):
90
+ def __init__(
91
+ self,
92
+ dim,
93
+ num_heads=8,
94
+ qkv_bias=True,
95
+ scaled_cosine=False,
96
+ scale_heads=False,
97
+ logit_scale_max=math.log(1. / 0.01),
98
+ attn_drop=0.,
99
+ proj_drop=0.
100
+ ):
101
+ super().__init__()
102
+ self.scaled_cosine = scaled_cosine
103
+ self.scale_heads = scale_heads
104
+ assert dim % num_heads == 0, 'dim should be divisible by num_heads'
105
+ self.num_heads = num_heads
106
+ self.head_dim = dim // num_heads
107
+ self.scale = self.head_dim ** -0.5
108
+ self.logit_scale_max = logit_scale_max
109
+
110
+ # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
111
+ self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
112
+ if qkv_bias:
113
+ self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
114
+ else:
115
+ self.in_proj_bias = None
116
+
117
+ if self.scaled_cosine:
118
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
119
+ else:
120
+ self.logit_scale = None
121
+ self.attn_drop = nn.Dropout(attn_drop)
122
+ if self.scale_heads:
123
+ self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
124
+ else:
125
+ self.head_scale = None
126
+ self.out_proj = nn.Linear(dim, dim)
127
+ self.out_drop = nn.Dropout(proj_drop)
128
+
129
+ def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
130
+ L, N, C = x.shape
131
+ q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
132
+ q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
133
+ k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
134
+ v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
135
+
136
+ if self.logit_scale is not None:
137
+ attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
138
+ logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
139
+ attn = attn.view(N, self.num_heads, L, L) * logit_scale
140
+ attn = attn.view(-1, L, L)
141
+ else:
142
+ q = q * self.scale
143
+ attn = torch.bmm(q, k.transpose(-1, -2))
144
+
145
+ if attn_mask is not None:
146
+ if attn_mask.dtype == torch.bool:
147
+ new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
148
+ new_attn_mask.masked_fill_(attn_mask, float("-inf"))
149
+ attn_mask = new_attn_mask
150
+ attn += attn_mask
151
+
152
+ attn = attn.softmax(dim=-1)
153
+ attn = self.attn_drop(attn)
154
+
155
+ x = torch.bmm(attn, v)
156
+ if self.head_scale is not None:
157
+ x = x.view(N, self.num_heads, L, C) * self.head_scale
158
+ x = x.view(-1, L, C)
159
+ x = x.transpose(0, 1).reshape(L, N, C)
160
+ x = self.out_proj(x)
161
+ x = self.out_drop(x)
162
+ return x
163
+
164
+
165
+ class AttentionalPooler(nn.Module):
166
+ def __init__(
167
+ self,
168
+ d_model: int,
169
+ context_dim: int,
170
+ n_head: int = 8,
171
+ n_queries: int = 256,
172
+ norm_layer: Callable = LayerNorm
173
+ ):
174
+ super().__init__()
175
+ self.query = nn.Parameter(torch.randn(n_queries, d_model))
176
+ self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim)
177
+ self.ln_q = norm_layer(d_model)
178
+ self.ln_k = norm_layer(context_dim)
179
+
180
+ def forward(self, x: torch.Tensor):
181
+ x = self.ln_k(x).permute(1, 0, 2) # NLD -> LND
182
+ N = x.shape[1]
183
+ q = self.ln_q(self.query)
184
+ out = self.attn(q.unsqueeze(1).expand(-1, N, -1), x, x, need_weights=False)[0]
185
+ return out.permute(1, 0, 2) # LND -> NLD
186
+
187
+
188
+ class ResidualAttentionBlock(nn.Module):
189
+ def __init__(
190
+ self,
191
+ d_model: int,
192
+ n_head: int,
193
+ mlp_ratio: float = 4.0,
194
+ ls_init_value: float = None,
195
+ act_layer: Callable = nn.GELU,
196
+ norm_layer: Callable = LayerNorm,
197
+ is_cross_attention: bool = False,
198
+ ):
199
+ super().__init__()
200
+
201
+ self.ln_1 = norm_layer(d_model)
202
+ self.attn = nn.MultiheadAttention(d_model, n_head)
203
+ self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
204
+ if is_cross_attention:
205
+ self.ln_1_kv = norm_layer(d_model)
206
+
207
+ self.ln_2 = norm_layer(d_model)
208
+ mlp_width = int(d_model * mlp_ratio)
209
+ self.mlp = nn.Sequential(OrderedDict([
210
+ ("c_fc", nn.Linear(d_model, mlp_width)),
211
+ ("gelu", act_layer()),
212
+ ("c_proj", nn.Linear(mlp_width, d_model))
213
+ ]))
214
+ self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
215
+
216
+ def attention(
217
+ self,
218
+ q_x: torch.Tensor,
219
+ k_x: Optional[torch.Tensor] = None,
220
+ v_x: Optional[torch.Tensor] = None,
221
+ attn_mask: Optional[torch.Tensor] = None,
222
+ ):
223
+ k_x = k_x if k_x is not None else q_x
224
+ v_x = v_x if v_x is not None else q_x
225
+
226
+ attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
227
+ return self.attn(
228
+ q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask
229
+ )[0]
230
+
231
+ def forward(
232
+ self,
233
+ q_x: torch.Tensor,
234
+ k_x: Optional[torch.Tensor] = None,
235
+ v_x: Optional[torch.Tensor] = None,
236
+ attn_mask: Optional[torch.Tensor] = None,
237
+ ):
238
+ k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
239
+ v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
240
+
241
+ x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
242
+ x = x + self.ls_2(self.mlp(self.ln_2(x)))
243
+ return x
244
+
245
+
246
+ class CustomResidualAttentionBlock(nn.Module):
247
+ def __init__(
248
+ self,
249
+ d_model: int,
250
+ n_head: int,
251
+ mlp_ratio: float = 4.0,
252
+ ls_init_value: float = None,
253
+ act_layer: Callable = nn.GELU,
254
+ norm_layer: Callable = LayerNorm,
255
+ scale_cosine_attn: bool = False,
256
+ scale_heads: bool = False,
257
+ scale_attn: bool = False,
258
+ scale_fc: bool = False,
259
+ ):
260
+ super().__init__()
261
+
262
+ self.ln_1 = norm_layer(d_model)
263
+ self.attn = Attention(
264
+ d_model, n_head,
265
+ scaled_cosine=scale_cosine_attn,
266
+ scale_heads=scale_heads,
267
+ )
268
+ self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
269
+ self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
270
+
271
+ self.ln_2 = norm_layer(d_model)
272
+ mlp_width = int(d_model * mlp_ratio)
273
+ self.mlp = nn.Sequential(OrderedDict([
274
+ ("c_fc", nn.Linear(d_model, mlp_width)),
275
+ ("gelu", act_layer()),
276
+ ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
277
+ ("c_proj", nn.Linear(mlp_width, d_model))
278
+ ]))
279
+ self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
280
+
281
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
282
+ x = x + self.ls_1(self.ln_attn(self.attn(self.ln_1(x), attn_mask=attn_mask)))
283
+ x = x + self.ls_2(self.mlp(self.ln_2(x)))
284
+ return x
285
+
286
+
287
+ def _expand_token(token, batch_size: int):
288
+ return token.view(1, 1, -1).expand(batch_size, -1, -1)
289
+
290
+
291
+ class Transformer(nn.Module):
292
+ def __init__(
293
+ self,
294
+ width: int,
295
+ layers: int,
296
+ heads: int,
297
+ mlp_ratio: float = 4.0,
298
+ ls_init_value: float = None,
299
+ act_layer: Callable = nn.GELU,
300
+ norm_layer: Callable = LayerNorm,
301
+ ):
302
+ super().__init__()
303
+ self.width = width
304
+ self.layers = layers
305
+ self.grad_checkpointing = False
306
+
307
+ self.resblocks = nn.ModuleList([
308
+ ResidualAttentionBlock(
309
+ width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer)
310
+ for _ in range(layers)
311
+ ])
312
+
313
+ def get_cast_dtype(self) -> torch.dtype:
314
+ if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
315
+ return self.resblocks[0].mlp.c_fc.int8_original_dtype
316
+ return self.resblocks[0].mlp.c_fc.weight.dtype
317
+
318
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
319
+ for r in self.resblocks:
320
+ if self.grad_checkpointing and not torch.jit.is_scripting():
321
+ # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
322
+ x = checkpoint(r, x, None, None, attn_mask)
323
+ else:
324
+ x = r(x, attn_mask=attn_mask)
325
+ return x
326
+
327
+
328
+ class VisionTransformer(nn.Module):
329
+ output_tokens: torch.jit.Final[bool]
330
+
331
+ def __init__(
332
+ self,
333
+ image_size: int,
334
+ patch_size: int,
335
+ width: int,
336
+ layers: int,
337
+ heads: int,
338
+ mlp_ratio: float,
339
+ in_channels:int,
340
+ ls_init_value: float = None,
341
+ attentional_pool: bool = False,
342
+ attn_pooler_queries: int = 256,
343
+ attn_pooler_heads: int = 8,
344
+ output_dim: int = 512,
345
+ patch_dropout: float = 0.,
346
+ no_ln_pre: bool = False,
347
+ pos_embed_type: str = 'learnable',
348
+ pool_type: str = 'tok',
349
+ final_ln_after_pool: bool = False,
350
+ act_layer: Callable = nn.GELU,
351
+ norm_layer: Callable = LayerNorm,
352
+ output_tokens: bool = False,
353
+ ):
354
+ super().__init__()
355
+ assert pool_type in ('tok', 'avg', 'none')
356
+ self.output_tokens = output_tokens
357
+ image_height, image_width = self.image_size = to_2tuple(image_size)
358
+ patch_height, patch_width = self.patch_size = to_2tuple(patch_size)
359
+ self.grid_size = (image_height // patch_height, image_width // patch_width)
360
+ self.final_ln_after_pool = final_ln_after_pool # currently ignored w/ attn pool enabled
361
+ self.output_dim = output_dim
362
+
363
+ self.conv1 = nn.Conv1d(in_channels=in_channels, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
364
+
365
+ # class embeddings and positional embeddings
366
+ scale = width ** -0.5
367
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
368
+ if pos_embed_type == 'learnable':
369
+ self.positional_embedding = nn.Parameter(
370
+ scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
371
+ elif pos_embed_type == 'sin_cos_2d':
372
+ # fixed sin-cos embedding
373
+ assert self.grid_size[0] == self.grid_size[1],\
374
+ 'currently sin cos 2d pos embedding only supports square input'
375
+ self.positional_embedding = nn.Parameter(
376
+ torch.zeros(200 + 1, width), requires_grad=False)
377
+ pos_embed_type = get_2d_sincos_pos_embed(width, self.grid_size[0], cls_token=True)
378
+ self.positional_embedding.data.copy_(torch.from_numpy(pos_embed_type).float())
379
+ else:
380
+ raise ValueError
381
+
382
+ # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
383
+ self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
384
+
385
+ self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width)
386
+ self.transformer = Transformer(
387
+ width,
388
+ layers,
389
+ heads,
390
+ mlp_ratio,
391
+ ls_init_value=ls_init_value,
392
+ act_layer=act_layer,
393
+ norm_layer=norm_layer,
394
+ )
395
+
396
+ if attentional_pool:
397
+ if isinstance(attentional_pool, str):
398
+ self.attn_pool_type = attentional_pool
399
+ self.pool_type = 'none'
400
+ if attentional_pool in ('parallel', 'cascade'):
401
+ self.attn_pool = AttentionalPooler(
402
+ output_dim,
403
+ width,
404
+ n_head=attn_pooler_heads,
405
+ n_queries=attn_pooler_queries,
406
+ )
407
+ self.attn_pool_contrastive = AttentionalPooler(
408
+ output_dim,
409
+ width,
410
+ n_head=attn_pooler_heads,
411
+ n_queries=1,
412
+ )
413
+ else:
414
+ assert False
415
+ else:
416
+ self.attn_pool_type = ''
417
+ self.pool_type = pool_type
418
+ self.attn_pool = AttentionalPooler(
419
+ output_dim,
420
+ width,
421
+ n_head=attn_pooler_heads,
422
+ n_queries=attn_pooler_queries,
423
+ )
424
+ self.attn_pool_contrastive = None
425
+ pool_dim = output_dim
426
+ else:
427
+ self.attn_pool = None
428
+ pool_dim = width
429
+ self.pool_type = pool_type
430
+
431
+ self.ln_post = norm_layer(pool_dim)
432
+ self.proj = nn.Parameter(scale * torch.randn(pool_dim, output_dim))
433
+
434
+ self.init_parameters()
435
+
436
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
437
+ for param in self.parameters():
438
+ param.requires_grad = False
439
+
440
+ if unlocked_groups != 0:
441
+ groups = [
442
+ [
443
+ self.conv1,
444
+ self.class_embedding,
445
+ self.positional_embedding,
446
+ self.ln_pre,
447
+ ],
448
+ *self.transformer.resblocks[:-1],
449
+ [
450
+ self.transformer.resblocks[-1],
451
+ self.ln_post,
452
+ ],
453
+ self.proj,
454
+ ]
455
+
456
+ def _unlock(x):
457
+ if isinstance(x, Sequence):
458
+ for g in x:
459
+ _unlock(g)
460
+ else:
461
+ if isinstance(x, torch.nn.Parameter):
462
+ x.requires_grad = True
463
+ else:
464
+ for p in x.parameters():
465
+ p.requires_grad = True
466
+
467
+ _unlock(groups[-unlocked_groups:])
468
+
469
+ def init_parameters(self):
470
+ # FIXME OpenAI CLIP did not define an init for the VisualTransformer
471
+ # TODO experiment if default PyTorch init, below, or alternate init is best.
472
+
473
+ # nn.init.normal_(self.class_embedding, std=self.scale)
474
+ # nn.init.normal_(self.positional_embedding, std=self.scale)
475
+ #
476
+ # proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
477
+ # attn_std = self.transformer.width ** -0.5
478
+ # fc_std = (2 * self.transformer.width) ** -0.5
479
+ # for block in self.transformer.resblocks:
480
+ # nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
481
+ # nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
482
+ # nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
483
+ # nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
484
+ #
485
+ # if self.text_projection is not None:
486
+ # nn.init.normal_(self.text_projection, std=self.scale)
487
+ pass
488
+
489
+ @torch.jit.ignore
490
+ def set_grad_checkpointing(self, enable=True):
491
+ self.transformer.grad_checkpointing = enable
492
+
493
+ def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
494
+ if self.pool_type == 'avg':
495
+ pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
496
+ elif self.pool_type == 'tok':
497
+ pooled, tokens = x[:, 0], x[:, 1:]
498
+ else:
499
+ pooled = tokens = x
500
+
501
+ return pooled, tokens
502
+
503
+ def forward(self, x: torch.Tensor):
504
+ x = self.conv1(x) # shape = [*, width, grid, grid]
505
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
506
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
507
+
508
+ # class embeddings and positional embeddings
509
+ x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
510
+ # shape = [*, grid ** 2 + 1, width]
511
+ x = x + self.positional_embedding[:x.shape[1],:].to(x.dtype)
512
+
513
+ x = self.patch_dropout(x)
514
+ x = self.ln_pre(x)
515
+
516
+ x = x.permute(1, 0, 2) # NLD -> LND
517
+ x = self.transformer(x)
518
+ x = x.permute(1, 0, 2) # LND -> NLD
519
+ x = self.ln_post(x)
520
+ return x
521
+
522
+ if self.attn_pool is not None:
523
+ if self.attn_pool_contrastive is not None:
524
+ # This is untested, WIP pooling that should match paper
525
+ x = self.ln_post(x) # TBD LN first or separate one after each pool?
526
+ tokens = self.attn_pool(x)
527
+ if self.attn_pool_type == 'parallel':
528
+ pooled = self.attn_pool_contrastive(x)
529
+ else:
530
+ assert self.attn_pool_type == 'cascade'
531
+ pooled = self.attn_pool_contrastive(tokens)
532
+ else:
533
+ # this is the original OpenCLIP CoCa setup, does not match paper
534
+ x = self.attn_pool(x)
535
+ x = self.ln_post(x)
536
+ pooled, tokens = self._global_pool(x)
537
+ elif self.final_ln_after_pool:
538
+ pooled, tokens = self._global_pool(x)
539
+ pooled = self.ln_post(pooled)
540
+ else:
541
+ x = self.ln_post(x)
542
+ pooled, tokens = self._global_pool(x)
543
+
544
+ if self.proj is not None:
545
+ pooled = pooled @ self.proj
546
+
547
+ if self.output_tokens:
548
+ return pooled, tokens
549
+
550
+ return pooled
551
+
552
+
553
+ def text_global_pool(x, text: Optional[torch.Tensor] = None, pool_type: str = 'argmax'):
554
+ if pool_type == 'first':
555
+ pooled, tokens = x[:, 0], x[:, 1:]
556
+ elif pool_type == 'last':
557
+ pooled, tokens = x[:, -1], x[:, :-1]
558
+ elif pool_type == 'argmax':
559
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
560
+ assert text is not None
561
+ pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
562
+ else:
563
+ pooled = tokens = x
564
+
565
+ return pooled, tokens
566
+
567
+
568
+ class TextTransformer(nn.Module):
569
+ output_tokens: torch.jit.Final[bool]
570
+
571
+ def __init__(
572
+ self,
573
+ context_length: int = 77,
574
+ vocab_size: int = 49408,
575
+ width: int = 512,
576
+ heads: int = 8,
577
+ layers: int = 12,
578
+ mlp_ratio: float = 4.0,
579
+ ls_init_value: float = None,
580
+ output_dim: int = 512,
581
+ embed_cls: bool = False,
582
+ no_causal_mask: bool = False,
583
+ pad_id: int = 0,
584
+ pool_type: str = 'argmax',
585
+ proj_bias: bool = False,
586
+ act_layer: Callable = nn.GELU,
587
+ norm_layer: Callable = LayerNorm,
588
+ output_tokens: bool = False,
589
+ ):
590
+ super().__init__()
591
+ assert pool_type in ('first', 'last', 'argmax', 'none')
592
+ self.output_tokens = output_tokens
593
+ self.num_pos = self.context_length = context_length
594
+ self.vocab_size = vocab_size
595
+ self.width = width
596
+ self.output_dim = output_dim
597
+ self.heads = heads
598
+ self.pad_id = pad_id
599
+ self.pool_type = pool_type
600
+
601
+ self.token_embedding = nn.Embedding(vocab_size, width)
602
+ if embed_cls:
603
+ self.cls_emb = nn.Parameter(torch.empty(width))
604
+ self.num_pos += 1
605
+ else:
606
+ self.cls_emb = None
607
+ self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
608
+ self.transformer = Transformer(
609
+ width=width,
610
+ layers=layers,
611
+ heads=heads,
612
+ mlp_ratio=mlp_ratio,
613
+ ls_init_value=ls_init_value,
614
+ act_layer=act_layer,
615
+ norm_layer=norm_layer,
616
+ )
617
+ self.ln_final = norm_layer(width)
618
+
619
+ if no_causal_mask:
620
+ self.attn_mask = None
621
+ else:
622
+ self.register_buffer('attn_mask', self.build_causal_mask(), persistent=False)
623
+
624
+ if proj_bias:
625
+ self.text_projection = nn.Linear(width, output_dim)
626
+ else:
627
+ self.text_projection = nn.Parameter(torch.empty(width, output_dim))
628
+
629
+ self.init_parameters()
630
+
631
+ def init_parameters(self):
632
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
633
+ nn.init.normal_(self.positional_embedding, std=0.01)
634
+ if self.cls_emb is not None:
635
+ nn.init.normal_(self.cls_emb, std=0.01)
636
+
637
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
638
+ attn_std = self.transformer.width ** -0.5
639
+ fc_std = (2 * self.transformer.width) ** -0.5
640
+ for block in self.transformer.resblocks:
641
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
642
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
643
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
644
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
645
+
646
+ if self.text_projection is not None:
647
+ if isinstance(self.text_projection, nn.Linear):
648
+ nn.init.normal_(self.text_projection.weight, std=self.transformer.width ** -0.5)
649
+ if self.text_projection.bias is not None:
650
+ nn.init.zeros_(self.text_projection.bias)
651
+ else:
652
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
653
+
654
+ @torch.jit.ignore
655
+ def set_grad_checkpointing(self, enable=True):
656
+ self.transformer.grad_checkpointing = enable
657
+
658
+ def build_causal_mask(self):
659
+ # lazily create causal attention mask, with full attention between the tokens
660
+ # pytorch uses additive attention mask; fill with -inf
661
+ mask = torch.empty(self.num_pos, self.num_pos)
662
+ mask.fill_(float("-inf"))
663
+ mask.triu_(1) # zero out the lower diagonal
664
+ return mask
665
+
666
+ def build_cls_mask(self, text, cast_dtype: torch.dtype):
667
+ cls_mask = (text != self.pad_id).unsqueeze(1)
668
+ cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=True)
669
+ additive_mask = torch.empty(cls_mask.shape, dtype=cast_dtype, device=cls_mask.device)
670
+ additive_mask.fill_(0)
671
+ additive_mask.masked_fill_(~cls_mask, float("-inf"))
672
+ additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0)
673
+ return additive_mask
674
+
675
+ def forward(self, text):
676
+ cast_dtype = self.transformer.get_cast_dtype()
677
+ seq_len = text.shape[1]
678
+
679
+ x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
680
+ attn_mask = self.attn_mask
681
+ if self.cls_emb is not None:
682
+ seq_len += 1
683
+ x = torch.cat([x, _expand_token(self.cls_emb, x.shape[0])], dim=1)
684
+ cls_mask = self.build_cls_mask(text, cast_dtype)
685
+ if attn_mask is not None:
686
+ attn_mask = attn_mask[None, :seq_len, :seq_len] + cls_mask[:, :seq_len, :seq_len]
687
+
688
+ x = x + self.positional_embedding[:seq_len].to(cast_dtype)
689
+ x = x.permute(1, 0, 2) # NLD -> LND
690
+ x = self.transformer(x, attn_mask=attn_mask)
691
+ x = x.permute(1, 0, 2) # LND -> NLD
692
+
693
+ # x.shape = [batch_size, n_ctx, transformer.width]
694
+ if self.cls_emb is not None:
695
+ # presence of appended cls embed (CoCa) overrides pool_type, always take last token
696
+ pooled, tokens = text_global_pool(x, pool_type='last')
697
+ pooled = self.ln_final(pooled) # final LN applied after pooling in this case
698
+ else:
699
+ x = self.ln_final(x)
700
+ pooled, tokens = text_global_pool(x, text, pool_type=self.pool_type)
701
+
702
+ if self.text_projection is not None:
703
+ if isinstance(self.text_projection, nn.Linear):
704
+ pooled = self.text_projection(pooled)
705
+ else:
706
+ pooled = pooled @ self.text_projection
707
+
708
+ if self.output_tokens:
709
+ return pooled, tokens
710
+
711
+ return pooled
712
+
713
+
714
+ class MultimodalTransformer(Transformer):
715
+ def __init__(
716
+ self,
717
+ width: int,
718
+ layers: int,
719
+ heads: int,
720
+ context_length: int = 77,
721
+ mlp_ratio: float = 4.0,
722
+ ls_init_value: float = None,
723
+ act_layer: Callable = nn.GELU,
724
+ norm_layer: Callable = LayerNorm,
725
+ output_dim: int = 512,
726
+ ):
727
+
728
+ super().__init__(
729
+ width=width,
730
+ layers=layers,
731
+ heads=heads,
732
+ mlp_ratio=mlp_ratio,
733
+ ls_init_value=ls_init_value,
734
+ act_layer=act_layer,
735
+ norm_layer=norm_layer,
736
+ )
737
+ self.context_length = context_length
738
+ self.cross_attn = nn.ModuleList([
739
+ ResidualAttentionBlock(
740
+ width,
741
+ heads,
742
+ mlp_ratio,
743
+ ls_init_value=ls_init_value,
744
+ act_layer=act_layer,
745
+ norm_layer=norm_layer,
746
+ is_cross_attention=True,
747
+ )
748
+ for _ in range(layers)
749
+ ])
750
+
751
+ self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
752
+
753
+ self.ln_final = norm_layer(width)
754
+ self.text_projection = nn.Parameter(torch.empty(width, output_dim))
755
+
756
+ def init_parameters(self):
757
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
758
+ attn_std = self.transformer.width ** -0.5
759
+ fc_std = (2 * self.transformer.width) ** -0.5
760
+ for block in self.transformer.resblocks:
761
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
762
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
763
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
764
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
765
+ for block in self.transformer.cross_attn:
766
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
767
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
768
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
769
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
770
+
771
+ if self.text_projection is not None:
772
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
773
+
774
+ def build_attention_mask(self):
775
+ # lazily create causal attention mask, with full attention between the tokens
776
+ # pytorch uses additive attention mask; fill with -inf
777
+ mask = torch.empty(self.context_length, self.context_length)
778
+ mask.fill_(float("-inf"))
779
+ mask.triu_(1) # zero out the lower diagonal
780
+ return mask
781
+
782
+ def forward(self, image_embs, text_embs):
783
+ text_embs = text_embs.permute(1, 0, 2) # NLD -> LNDsq
784
+ image_embs = image_embs.permute(1, 0, 2) # NLD -> LND
785
+ seq_len = text_embs.shape[0]
786
+
787
+ for resblock, cross_attn in zip(self.resblocks, self.cross_attn):
788
+ if self.grad_checkpointing and not torch.jit.is_scripting():
789
+ # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
790
+ text_embs = checkpoint(resblock, text_embs, None, None, self.attn_mask[:seq_len, :seq_len])
791
+ text_embs = checkpoint(cross_attn, text_embs, image_embs, image_embs, None)
792
+ else:
793
+ text_embs = resblock(text_embs, attn_mask=self.attn_mask[:seq_len, :seq_len])
794
+ text_embs = cross_attn(text_embs, k_x=image_embs, v_x=image_embs)
795
+
796
+ x = text_embs.permute(1, 0, 2) # LND -> NLD
797
+ x = self.ln_final(x)
798
+
799
+ if self.text_projection is not None:
800
+ x = x @ self.text_projection
801
+
802
+ return x
803
+
804
+ @torch.jit.ignore
805
+ def set_grad_checkpointing(self, enable=True):
806
+ self.grad_checkpointing = enable
ttts/AA_diffusion_deprecated/cldm/utils.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import repeat
2
+ import collections.abc
3
+
4
+ import torch
5
+ from torch import nn as nn
6
+ from torchvision.ops.misc import FrozenBatchNorm2d
7
+
8
+
9
+ def freeze_batch_norm_2d(module, module_match={}, name=''):
10
+ """
11
+ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
12
+ itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
13
+ returned. Otherwise, the module is walked recursively and submodules are converted in place.
14
+
15
+ Args:
16
+ module (torch.nn.Module): Any PyTorch module.
17
+ module_match (dict): Dictionary of full module names to freeze (all if empty)
18
+ name (str): Full module name (prefix)
19
+
20
+ Returns:
21
+ torch.nn.Module: Resulting module
22
+
23
+ Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
24
+ """
25
+ res = module
26
+ is_match = True
27
+ if module_match:
28
+ is_match = name in module_match
29
+ if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
30
+ res = FrozenBatchNorm2d(module.num_features)
31
+ res.num_features = module.num_features
32
+ res.affine = module.affine
33
+ if module.affine:
34
+ res.weight.data = module.weight.data.clone().detach()
35
+ res.bias.data = module.bias.data.clone().detach()
36
+ res.running_mean.data = module.running_mean.data
37
+ res.running_var.data = module.running_var.data
38
+ res.eps = module.eps
39
+ else:
40
+ for child_name, child in module.named_children():
41
+ full_child_name = '.'.join([name, child_name]) if name else child_name
42
+ new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
43
+ if new_child is not child:
44
+ res.add_module(child_name, new_child)
45
+ return res
46
+
47
+
48
+ # From PyTorch internals
49
+ def _ntuple(n):
50
+ def parse(x):
51
+ if isinstance(x, collections.abc.Iterable):
52
+ return x
53
+ return tuple(repeat(x, n))
54
+ return parse
55
+
56
+
57
+ to_1tuple = _ntuple(1)
58
+ to_2tuple = _ntuple(2)
59
+ to_3tuple = _ntuple(3)
60
+ to_4tuple = _ntuple(4)
61
+ to_ntuple = lambda n, x: _ntuple(n)(x)
62
+
63
+ # Replaces all linear layers with linear_replacement
64
+ # TODO: add int8 support for other linear layers including attn and convnets
65
+ def replace_linear(model, linear_replacement, include_modules=['c_fc', 'c_proj'], copy_weights=True):
66
+ for name, module in model.named_children():
67
+ if len(list(module.children())) > 0:
68
+ replace_linear(module, linear_replacement, include_modules, copy_weights)
69
+
70
+ if isinstance(module, torch.nn.Linear) and name in include_modules:
71
+ old_module = model._modules[name]
72
+ model._modules[name] = linear_replacement(
73
+ module.in_features,
74
+ module.out_features,
75
+ module.bias is not None,
76
+ )
77
+ if copy_weights:
78
+ model._modules[name].weight.data.copy_(old_module.weight.data)
79
+ if model._modules[name].bias is not None:
80
+ model._modules[name].bias.data.copy_(old_module.bias)
81
+
82
+ return model
83
+
84
+ def convert_int8_model_to_inference_mode(model):
85
+ for m in model.modules():
86
+ if hasattr(m, 'prepare_for_eval'):
87
+ int8_original_dtype = m.weight.dtype
88
+ m.prepare_for_eval()
89
+ m.int8_original_dtype = int8_original_dtype
ttts/AA_diffusion_deprecated/config.yaml ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataloader:
2
+ batch_size : 16
3
+ shuffle: true
4
+ num_workers : 64
5
+ drop_last : true
6
+ pin_memory : true
7
+ model:
8
+ target: cldm.cldm.ControlLDM
9
+ params:
10
+ # linear_start: 0.00085
11
+ # linear_end: 0.0120
12
+ num_timesteps_cond: 1
13
+ log_every_t: 200
14
+ timesteps: 1000
15
+ first_stage_key: "jpg"
16
+ cond_stage_key: "txt"
17
+ control_key: "hint"
18
+ image_size: 64
19
+ channels: 100
20
+ cond_stage_trainable: true
21
+ # conditioning_key: crossattn
22
+ monitor: val/loss_simple_ema
23
+ scale_factor: 0.18215
24
+ use_ema: False
25
+ only_mid_control: False
26
+
27
+ # control_stage_config:
28
+ # target: cldm.cldm.ControlNet
29
+ # params:
30
+ # image_size: 32 # unused
31
+ # in_channels: 100
32
+ # hint_channels: 768
33
+ # model_channels: 128
34
+ # attention_resolutions: [ 4, 2, 1 ]
35
+ # num_res_blocks: 2
36
+ # channel_mult: [ 1, 2, 4, 4 ]
37
+ # num_heads: 8
38
+ # use_spatial_transformer: True
39
+ # transformer_depth: 1
40
+ # context_dim: 768
41
+ # use_checkpoint: True
42
+ # legacy: False
43
+ refer_config:
44
+ target: cldm.cldm.ReferenceNet
45
+ params:
46
+ image_size: 32 # unused
47
+ hint_in_channels: 1024
48
+ hint_out_channels: 128
49
+ in_channels: 100
50
+ out_channels: 100
51
+ model_channels: 1024
52
+ attention_resolutions: [ 4, 2, 1 ]
53
+ num_res_blocks: 1
54
+ channel_mult: [ 1, 1 ]
55
+ num_heads: 8
56
+ use_spatial_transformer: True
57
+ transformer_depth: 1
58
+ context_dim: 512
59
+ use_checkpoint: True
60
+ dims: 1
61
+ legacy: False
62
+
63
+
64
+ unet_config:
65
+ target: tortoise_model.DiffusionTts
66
+ params:
67
+ model_channels: 512
68
+ num_layers: 8
69
+ in_channels: 100
70
+ in_latent_channels: 1024
71
+ out_channels: 100
72
+ dropout: 0
73
+ use_fp16: False
74
+ num_heads: 16
75
+ layer_drop: .1
76
+ unconditioned_percentage: .1
77
+ # target: cldm.cldm.ControlledUnetModel
78
+ # params:
79
+ # image_size: 32 # unused
80
+ # hint_in_channels: 1024
81
+ # hint_out_channels: 128
82
+ # in_channels: 100
83
+ # out_channels: 100
84
+ # model_channels: 1024
85
+ # attention_resolutions: [ 4, 2, 1 ]
86
+ # num_res_blocks: 1
87
+ # resblock_updown: True
88
+ # channel_mult: [ 1, 1]
89
+ # num_heads: 8
90
+ # use_spatial_transformer: True
91
+ # transformer_depth: 1
92
+ # context_dim: 512
93
+ # use_checkpoint: True
94
+ # dims: 1
95
+ # legacy: False
96
+
97
+ cond_stage_config:
98
+ target: cldm.cond_emb.CLIP
99
+ params:
100
+ embed_dim: 512
101
+ vision_cfg:
102
+ layers: 6
103
+ width: 512
104
+ head_width: 64
105
+ mlp_ratio: 4.0
106
+ patch_dropout: 0.4
107
+ attentional_pool: False
108
+ patch_size: 64
109
+ image_size: 1000
110
+ in_channels: 100
111
+ pool_type: 'tok'
112
+ pos_embed_type: 'learnable'
113
+ final_ln_after_pool: false
114
+
115
+ train:
116
+ train_batch_size : 32
117
+ gradient_accumulate_every : 1
118
+ train_lr : 0.0001
119
+ train_num_steps : 1000000
120
+ ema_update_every : 10
121
+ ema_decay : 0.995
122
+ adam_betas : [0.9, 0.99]
123
+ save_and_sample_every : 1000
124
+ timesteps : 1000
125
+ sampling_timesteps : 1000
126
+ results_folder : "results"
127
+ logs_folder : "ttts/AA_diffusion/logs"
128
+ num_workers : 32
129
+ eps : 0.000000001
130
+ keep_ckpts : 3
131
+ all_in_mem : false
132
+ dataset:
133
+ path : "/home/hyc/tortoise_plus_zh/ttts/datasets/databaker_data.jsonl"
134
+ gpt_path : "/home/hyc/tortoise_plus_zh/ttts/gpt/logs/2023-12-24-14-22-14/model-70.pt"
ttts/AA_diffusion_deprecated/dataset.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ import torch.utils.data
7
+ from torch import LongTensor
8
+ from tqdm import tqdm
9
+ import torchaudio
10
+ from pypinyin import Style, lazy_pinyin
11
+ import math
12
+ from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer
13
+ from ttts.utils.infer_utils import load_model
14
+ import json
15
+ import os
16
+
17
+ def padding_to_8(x):
18
+ l = x.shape[-1]
19
+ l = (math.floor(l / 8) + 1) * 8
20
+ x = torch.nn.functional.pad(x, (0, l-x.shape[-1]))
21
+ return x
22
+ def read_jsonl(path):
23
+ with open(path, 'r') as f:
24
+ json_str = f.read()
25
+ data_list = []
26
+ for line in json_str.splitlines():
27
+ data = json.loads(line)
28
+ data_list.append(data)
29
+ return data_list
30
+ def write_jsonl(path, all_paths):
31
+ with open(path,'w', encoding='utf-8') as file:
32
+ for item in all_paths:
33
+ json.dump(item, file, ensure_ascii=False)
34
+ file.write('\n')
35
+
36
+ def padding_to_8(x):
37
+ l = x.shape[-1]
38
+ l = (math.floor(l / 8) + 1) * 8
39
+ x = torch.nn.functional.pad(x, (0, l-x.shape[-1]))
40
+ return x
41
+ class DiffusionDataset(torch.utils.data.Dataset):
42
+ def __init__(self, opt):
43
+ self.jsonl_path = opt['dataset']['path']
44
+ self.audiopaths_and_text = read_jsonl(self.jsonl_path)
45
+ self.tok = VoiceBpeTokenizer('ttts/gpt/gpt_tts_tokenizer.json')
46
+ def __getitem__(self, index):
47
+ # Fetch text and add start/stop tokens.
48
+ audiopath_and_text = self.audiopaths_and_text[index]
49
+ audiopath, text = audiopath_and_text['path'], audiopath_and_text['text']
50
+ text = ' '.join(lazy_pinyin(text, style=Style.TONE3, neutral_tone_with_five=True))
51
+ text = self.tok.encode(text)
52
+ text_tokens = LongTensor(text)
53
+ try:
54
+ mel_path = audiopath + '.mel.pth'
55
+ mel_raw = torch.load(mel_path)[0]
56
+
57
+ quant_path = audiopath + '.melvq.pth'
58
+ mel_codes = LongTensor(torch.load(quant_path)[0])
59
+ except:
60
+ return None
61
+
62
+ # Define the number of frames for the random crop (adjust as needed)
63
+ crop_frames = random.randint(int(mel_raw.shape[1] // 4), int(mel_raw.shape[1] // 4 * 3))
64
+
65
+ # Ensure the crop doesn't exceed the length of the original audio
66
+ max_start_frame = mel_raw.shape[1] - crop_frames
67
+ start_frame = random.randint(0, max_start_frame)
68
+
69
+ # Perform the random crop
70
+ mel_refer = mel_raw[:, start_frame: start_frame + crop_frames]
71
+ mel_refer = padding_to_8(mel_refer)
72
+ # split = random.randint(int(mel_raw.shape[1]//3), int(mel_raw.shape[1]//3*2))
73
+ # if random.random()>0.5:
74
+ # mel_refer = mel_raw[:,split:]
75
+ # else:
76
+ # mel_refer = mel_raw[:,:split]
77
+ # if mel_refer.shape[1]>200:
78
+ # mel_refer = mel_refer[:,:200]
79
+ #text_token mel_codes
80
+
81
+ if mel_raw.shape[1]>400:
82
+ mel_raw = mel_raw[:,:400]
83
+ mel_codes = mel_codes[:100]
84
+ if mel_codes.shape[-1]%2==1:
85
+ mel_codes = mel_codes[:-1]
86
+ mel_raw = mel_raw[:,:-4]
87
+ return text_tokens, mel_codes, mel_raw, mel_refer
88
+
89
+ def __len__(self):
90
+ return len(self.audiopaths_and_text)
91
+
92
+
93
+ class DiffusionCollater():
94
+
95
+ def __init__(self):
96
+ pass
97
+ def __call__(self, batch):
98
+ batch = [x for x in batch if x is not None]
99
+ if len(batch)==0:
100
+ return None
101
+ text_lens = [len(x[0]) for x in batch]
102
+ max_text_len = max(text_lens)
103
+ mel_code_lens = [len(x[1]) for x in batch]
104
+ max_mel_code_len = max(mel_code_lens)
105
+ mel_lens = [x[2].shape[1] for x in batch]
106
+ max_mel_len = max(mel_lens)
107
+ mel_refer_lens = [x[3].shape[1] for x in batch]
108
+ max_mel_refer_len = max(mel_refer_lens)
109
+ texts = []
110
+ mel_codes = []
111
+ mels = []
112
+ mel_refers = []
113
+ # This is the sequential "background" tokens that are used as padding for text tokens, as specified in the DALLE paper.
114
+ for b in batch:
115
+ text_token, mel_code, mel, mel_refer = b
116
+ texts.append(F.pad(text_token,(0,max_text_len-len(text_token)), value=0))
117
+ mel_codes.append(F.pad(mel_code,(0,max_mel_code_len-len(mel_code)), value=0))
118
+ mels.append(F.pad(mel,(0, max_mel_len-mel.shape[1]), value=0))
119
+ mel_refers.append(F.pad(mel_refer,(0, max_mel_refer_len-mel_refer.shape[1]), value=0))
120
+
121
+ padded_text = torch.stack(texts)
122
+ padded_mel_code = torch.stack(mel_codes)
123
+ padded_mel = torch.stack(mels)
124
+ padded_mel_refer = torch.stack(mel_refers)
125
+ return {
126
+ 'padded_text': padded_text,
127
+ 'padded_mel_code': padded_mel_code,
128
+ 'padded_mel': padded_mel,
129
+ 'mel_lengths': LongTensor(mel_lens),
130
+ 'padded_mel_refer':padded_mel_refer,
131
+ 'mel_refer_lengths':LongTensor(mel_refer_lens)
132
+ }
133
+
134
+
135
+ if __name__ == '__main__':
136
+ params = {
137
+ 'mode': 'gpt_tts',
138
+ 'path': 'E:\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt',
139
+ 'phase': 'train',
140
+ 'n_workers': 0,
141
+ 'batch_size': 16,
142
+ 'mel_vocab_size': 512,
143
+ }
144
+ cfg = json.load(open('ttts/diffusion/config.json'))
145
+ ds = DiffusionDataset(cfg)
146
+ dl = torch.utils.data.DataLoader(ds, **cfg['dataloader'], collate_fn=DiffusionCollater())
147
+ i = 0
148
+ m = []
149
+ max_text = 0
150
+ max_mel = 0
151
+ for b in tqdm(dl):
152
+ break
ttts/AA_diffusion_deprecated/ldm/data/__init__.py ADDED
File without changes
ttts/AA_diffusion_deprecated/ldm/data/util.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ldm.modules.midas.api import load_midas_transform
4
+
5
+
6
+ class AddMiDaS(object):
7
+ def __init__(self, model_type):
8
+ super().__init__()
9
+ self.transform = load_midas_transform(model_type)
10
+
11
+ def pt2np(self, x):
12
+ x = ((x + 1.0) * .5).detach().cpu().numpy()
13
+ return x
14
+
15
+ def np2pt(self, x):
16
+ x = torch.from_numpy(x) * 2 - 1.
17
+ return x
18
+
19
+ def __call__(self, sample):
20
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
21
+ x = self.pt2np(sample['jpg'])
22
+ x = self.transform({"image": x})["image"]
23
+ sample['midas_in'] = x
24
+ return sample
ttts/AA_diffusion_deprecated/ldm/models/autoencoder.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
7
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
8
+
9
+ from ldm.util import instantiate_from_config
10
+ from ldm.modules.ema import LitEma
11
+
12
+
13
+ class AutoencoderKL(pl.LightningModule):
14
+ def __init__(self,
15
+ ddconfig,
16
+ lossconfig,
17
+ embed_dim,
18
+ ckpt_path=None,
19
+ ignore_keys=[],
20
+ image_key="image",
21
+ colorize_nlabels=None,
22
+ monitor=None,
23
+ ema_decay=None,
24
+ learn_logvar=False
25
+ ):
26
+ super().__init__()
27
+ self.learn_logvar = learn_logvar
28
+ self.image_key = image_key
29
+ self.encoder = Encoder(**ddconfig)
30
+ self.decoder = Decoder(**ddconfig)
31
+ self.loss = instantiate_from_config(lossconfig)
32
+ assert ddconfig["double_z"]
33
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
34
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
35
+ self.embed_dim = embed_dim
36
+ if colorize_nlabels is not None:
37
+ assert type(colorize_nlabels)==int
38
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
39
+ if monitor is not None:
40
+ self.monitor = monitor
41
+
42
+ self.use_ema = ema_decay is not None
43
+ if self.use_ema:
44
+ self.ema_decay = ema_decay
45
+ assert 0. < ema_decay < 1.
46
+ self.model_ema = LitEma(self, decay=ema_decay)
47
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
48
+
49
+ if ckpt_path is not None:
50
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
51
+
52
+ def init_from_ckpt(self, path, ignore_keys=list()):
53
+ sd = torch.load(path, map_location="cpu")["state_dict"]
54
+ keys = list(sd.keys())
55
+ for k in keys:
56
+ for ik in ignore_keys:
57
+ if k.startswith(ik):
58
+ print("Deleting key {} from state_dict.".format(k))
59
+ del sd[k]
60
+ self.load_state_dict(sd, strict=False)
61
+ print(f"Restored from {path}")
62
+
63
+ @contextmanager
64
+ def ema_scope(self, context=None):
65
+ if self.use_ema:
66
+ self.model_ema.store(self.parameters())
67
+ self.model_ema.copy_to(self)
68
+ if context is not None:
69
+ print(f"{context}: Switched to EMA weights")
70
+ try:
71
+ yield None
72
+ finally:
73
+ if self.use_ema:
74
+ self.model_ema.restore(self.parameters())
75
+ if context is not None:
76
+ print(f"{context}: Restored training weights")
77
+
78
+ def on_train_batch_end(self, *args, **kwargs):
79
+ if self.use_ema:
80
+ self.model_ema(self)
81
+
82
+ def encode(self, x):
83
+ h = self.encoder(x)
84
+ moments = self.quant_conv(h)
85
+ posterior = DiagonalGaussianDistribution(moments)
86
+ return posterior
87
+
88
+ def decode(self, z):
89
+ z = self.post_quant_conv(z)
90
+ dec = self.decoder(z)
91
+ return dec
92
+
93
+ def forward(self, input, sample_posterior=True):
94
+ posterior = self.encode(input)
95
+ if sample_posterior:
96
+ z = posterior.sample()
97
+ else:
98
+ z = posterior.mode()
99
+ dec = self.decode(z)
100
+ return dec, posterior
101
+
102
+ def get_input(self, batch, k):
103
+ x = batch[k]
104
+ if len(x.shape) == 3:
105
+ x = x[..., None]
106
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
107
+ return x
108
+
109
+ def training_step(self, batch, batch_idx, optimizer_idx):
110
+ inputs = self.get_input(batch, self.image_key)
111
+ reconstructions, posterior = self(inputs)
112
+
113
+ if optimizer_idx == 0:
114
+ # train encoder+decoder+logvar
115
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
116
+ last_layer=self.get_last_layer(), split="train")
117
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
118
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
119
+ return aeloss
120
+
121
+ if optimizer_idx == 1:
122
+ # train the discriminator
123
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
124
+ last_layer=self.get_last_layer(), split="train")
125
+
126
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
127
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
128
+ return discloss
129
+
130
+ def validation_step(self, batch, batch_idx):
131
+ log_dict = self._validation_step(batch, batch_idx)
132
+ with self.ema_scope():
133
+ log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
134
+ return log_dict
135
+
136
+ def _validation_step(self, batch, batch_idx, postfix=""):
137
+ inputs = self.get_input(batch, self.image_key)
138
+ reconstructions, posterior = self(inputs)
139
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
140
+ last_layer=self.get_last_layer(), split="val"+postfix)
141
+
142
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
143
+ last_layer=self.get_last_layer(), split="val"+postfix)
144
+
145
+ self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
146
+ self.log_dict(log_dict_ae)
147
+ self.log_dict(log_dict_disc)
148
+ return self.log_dict
149
+
150
+ def configure_optimizers(self):
151
+ lr = self.learning_rate
152
+ ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
153
+ self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
154
+ if self.learn_logvar:
155
+ print(f"{self.__class__.__name__}: Learning logvar")
156
+ ae_params_list.append(self.loss.logvar)
157
+ opt_ae = torch.optim.Adam(ae_params_list,
158
+ lr=lr, betas=(0.5, 0.9))
159
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
160
+ lr=lr, betas=(0.5, 0.9))
161
+ return [opt_ae, opt_disc], []
162
+
163
+ def get_last_layer(self):
164
+ return self.decoder.conv_out.weight
165
+
166
+ @torch.no_grad()
167
+ def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
168
+ log = dict()
169
+ x = self.get_input(batch, self.image_key)
170
+ x = x.to(self.device)
171
+ if not only_inputs:
172
+ xrec, posterior = self(x)
173
+ if x.shape[1] > 3:
174
+ # colorize with random projection
175
+ assert xrec.shape[1] > 3
176
+ x = self.to_rgb(x)
177
+ xrec = self.to_rgb(xrec)
178
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
179
+ log["reconstructions"] = xrec
180
+ if log_ema or self.use_ema:
181
+ with self.ema_scope():
182
+ xrec_ema, posterior_ema = self(x)
183
+ if x.shape[1] > 3:
184
+ # colorize with random projection
185
+ assert xrec_ema.shape[1] > 3
186
+ xrec_ema = self.to_rgb(xrec_ema)
187
+ log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
188
+ log["reconstructions_ema"] = xrec_ema
189
+ log["inputs"] = x
190
+ return log
191
+
192
+ def to_rgb(self, x):
193
+ assert self.image_key == "segmentation"
194
+ if not hasattr(self, "colorize"):
195
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
196
+ x = F.conv2d(x, weight=self.colorize)
197
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
198
+ return x
199
+
200
+
201
+ class IdentityFirstStage(torch.nn.Module):
202
+ def __init__(self, *args, vq_interface=False, **kwargs):
203
+ self.vq_interface = vq_interface
204
+ super().__init__()
205
+
206
+ def encode(self, x, *args, **kwargs):
207
+ return x
208
+
209
+ def decode(self, x, *args, **kwargs):
210
+ return x
211
+
212
+ def quantize(self, x, *args, **kwargs):
213
+ if self.vq_interface:
214
+ return x, None, [None, None, None]
215
+ return x
216
+
217
+ def forward(self, x, *args, **kwargs):
218
+ return x
219
+
ttts/AA_diffusion_deprecated/ldm/models/diffusion/__init__.py ADDED
File without changes
ttts/AA_diffusion_deprecated/ldm/models/diffusion/ddim.py ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+
9
+
10
+ class DDIMSampler(object):
11
+ def __init__(self, model, schedule="linear", **kwargs):
12
+ super().__init__()
13
+ self.model = model
14
+ self.ddpm_num_timesteps = model.num_timesteps
15
+ self.schedule = schedule
16
+
17
+ def register_buffer(self, name, attr):
18
+ if type(attr) == torch.Tensor:
19
+ if attr.device != torch.device("cuda"):
20
+ attr = attr.to(torch.device("cuda"))
21
+ setattr(self, name, attr)
22
+
23
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
+ alphas_cumprod = self.model.alphas_cumprod
27
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
+
30
+ self.register_buffer('betas', to_torch(self.model.betas))
31
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
+
34
+ # calculations for diffusion q(x_t | x_{t-1}) and others
35
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
+
41
+ # ddim sampling parameters
42
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
+ ddim_timesteps=self.ddim_timesteps,
44
+ eta=ddim_eta,verbose=verbose)
45
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
46
+ self.register_buffer('ddim_alphas', ddim_alphas)
47
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
+
54
+ @torch.no_grad()
55
+ def sample(self,
56
+ S,
57
+ batch_size,
58
+ shape,
59
+ conditioning=None,
60
+ callback=None,
61
+ normals_sequence=None,
62
+ img_callback=None,
63
+ quantize_x0=False,
64
+ eta=0.,
65
+ mask=None,
66
+ x0=None,
67
+ temperature=1.,
68
+ noise_dropout=0.,
69
+ score_corrector=None,
70
+ corrector_kwargs=None,
71
+ verbose=True,
72
+ x_T=None,
73
+ log_every_t=100,
74
+ unconditional_guidance_scale=1.,
75
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
76
+ dynamic_threshold=None,
77
+ ucg_schedule=None,
78
+ **kwargs
79
+ ):
80
+ if conditioning is not None:
81
+ if isinstance(conditioning, dict):
82
+ ctmp = conditioning[list(conditioning.keys())[0]]
83
+ while isinstance(ctmp, list): ctmp = ctmp[0]
84
+ cbs = ctmp.shape[0]
85
+ if cbs != batch_size:
86
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
+
88
+ elif isinstance(conditioning, list):
89
+ for ctmp in conditioning:
90
+ if ctmp.shape[0] != batch_size:
91
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
92
+
93
+ else:
94
+ if conditioning.shape[0] != batch_size:
95
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
96
+
97
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
98
+ # sampling
99
+ C, T = shape
100
+ size = (batch_size, C, T)
101
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
102
+
103
+ samples, intermediates = self.ddim_sampling(conditioning, size,
104
+ callback=callback,
105
+ img_callback=img_callback,
106
+ quantize_denoised=quantize_x0,
107
+ mask=mask, x0=x0,
108
+ ddim_use_original_steps=False,
109
+ noise_dropout=noise_dropout,
110
+ temperature=temperature,
111
+ score_corrector=score_corrector,
112
+ corrector_kwargs=corrector_kwargs,
113
+ x_T=x_T,
114
+ log_every_t=log_every_t,
115
+ unconditional_guidance_scale=unconditional_guidance_scale,
116
+ unconditional_conditioning=unconditional_conditioning,
117
+ dynamic_threshold=dynamic_threshold,
118
+ ucg_schedule=ucg_schedule
119
+ )
120
+ return samples, intermediates
121
+
122
+ @torch.no_grad()
123
+ def ddim_sampling(self, cond, shape,
124
+ x_T=None, ddim_use_original_steps=False,
125
+ callback=None, timesteps=None, quantize_denoised=False,
126
+ mask=None, x0=None, img_callback=None, log_every_t=100,
127
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
128
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
129
+ ucg_schedule=None):
130
+ device = self.model.betas.device
131
+ b = shape[0]
132
+ if x_T is None:
133
+ img = torch.randn(shape, device=device)
134
+ else:
135
+ img = x_T
136
+
137
+ if timesteps is None:
138
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
139
+ elif timesteps is not None and not ddim_use_original_steps:
140
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
141
+ timesteps = self.ddim_timesteps[:subset_end]
142
+
143
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
144
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
145
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
146
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
147
+
148
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
149
+
150
+ for i, step in enumerate(iterator):
151
+ index = total_steps - i - 1
152
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
153
+
154
+ if mask is not None:
155
+ assert x0 is not None
156
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
157
+ img = img_orig * mask + (1. - mask) * img
158
+
159
+ if ucg_schedule is not None:
160
+ assert len(ucg_schedule) == len(time_range)
161
+ unconditional_guidance_scale = ucg_schedule[i]
162
+
163
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
164
+ quantize_denoised=quantize_denoised, temperature=temperature,
165
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
166
+ corrector_kwargs=corrector_kwargs,
167
+ unconditional_guidance_scale=unconditional_guidance_scale,
168
+ unconditional_conditioning=unconditional_conditioning,
169
+ dynamic_threshold=dynamic_threshold)
170
+ img, pred_x0 = outs
171
+ if callback: callback(i)
172
+ if img_callback: img_callback(pred_x0, i)
173
+
174
+ if index % log_every_t == 0 or index == total_steps - 1:
175
+ intermediates['x_inter'].append(img)
176
+ intermediates['pred_x0'].append(pred_x0)
177
+
178
+ return img, intermediates
179
+
180
+ @torch.no_grad()
181
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
182
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
183
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
184
+ dynamic_threshold=None):
185
+ b, *_, device = *x.shape, x.device
186
+
187
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
+ model_output = self.model.apply_model(x, t, c)
189
+ else:
190
+ x_in = torch.cat([x] * 2)
191
+ t_in = torch.cat([t] * 2)
192
+ if isinstance(c, dict):
193
+ assert isinstance(unconditional_conditioning, dict)
194
+ c_in = dict()
195
+ for k in c:
196
+ if isinstance(c[k], list):
197
+ c_in[k] = [torch.cat([
198
+ unconditional_conditioning[k][i],
199
+ c[k][i]]) for i in range(len(c[k]))]
200
+ else:
201
+ c_in[k] = torch.cat([
202
+ unconditional_conditioning[k],
203
+ c[k]])
204
+ elif isinstance(c, list):
205
+ c_in = list()
206
+ assert isinstance(unconditional_conditioning, list)
207
+ for i in range(len(c)):
208
+ c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
209
+ else:
210
+ c_in = torch.cat([unconditional_conditioning, c])
211
+ model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
212
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
213
+
214
+ if self.model.parameterization == "v":
215
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
216
+ else:
217
+ e_t = model_output
218
+
219
+ if score_corrector is not None:
220
+ assert self.model.parameterization == "eps", 'not implemented'
221
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
222
+
223
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
224
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
225
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
226
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
227
+ # select parameters corresponding to the currently considered timestep
228
+ a_t = torch.full((b, 1, 1), alphas[index], device=device)
229
+ a_prev = torch.full((b, 1, 1), alphas_prev[index], device=device)
230
+ sigma_t = torch.full((b, 1, 1), sigmas[index], device=device)
231
+ sqrt_one_minus_at = torch.full((b, 1, 1), sqrt_one_minus_alphas[index],device=device)
232
+
233
+ # current prediction for x_0
234
+ if self.model.parameterization != "v":
235
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
236
+ else:
237
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
238
+
239
+ if quantize_denoised:
240
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
241
+
242
+ if dynamic_threshold is not None:
243
+ raise NotImplementedError()
244
+ pred_x0 = pred_x0.clamp(-1, 1)
245
+ # direction pointing to x_t
246
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
247
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
248
+ if noise_dropout > 0.:
249
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
250
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
251
+ return x_prev, pred_x0
252
+
253
+ @torch.no_grad()
254
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
255
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
256
+ num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
257
+
258
+ assert t_enc <= num_reference_steps
259
+ num_steps = t_enc
260
+
261
+ if use_original_steps:
262
+ alphas_next = self.alphas_cumprod[:num_steps]
263
+ alphas = self.alphas_cumprod_prev[:num_steps]
264
+ else:
265
+ alphas_next = self.ddim_alphas[:num_steps]
266
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
267
+
268
+ x_next = x0
269
+ intermediates = []
270
+ inter_steps = []
271
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
272
+ t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
273
+ if unconditional_guidance_scale == 1.:
274
+ noise_pred = self.model.apply_model(x_next, t, c)
275
+ else:
276
+ assert unconditional_conditioning is not None
277
+ e_t_uncond, noise_pred = torch.chunk(
278
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
279
+ torch.cat((unconditional_conditioning, c))), 2)
280
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
281
+
282
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
283
+ weighted_noise_pred = alphas_next[i].sqrt() * (
284
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
285
+ x_next = xt_weighted + weighted_noise_pred
286
+ if return_intermediates and i % (
287
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
288
+ intermediates.append(x_next)
289
+ inter_steps.append(i)
290
+ elif return_intermediates and i >= num_steps - 2:
291
+ intermediates.append(x_next)
292
+ inter_steps.append(i)
293
+ if callback: callback(i)
294
+
295
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
296
+ if return_intermediates:
297
+ out.update({'intermediates': intermediates})
298
+ return x_next, out
299
+
300
+ @torch.no_grad()
301
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
302
+ # fast, but does not allow for exact reconstruction
303
+ # t serves as an index to gather the correct alphas
304
+ if use_original_steps:
305
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
306
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
307
+ else:
308
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
309
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
310
+
311
+ if noise is None:
312
+ noise = torch.randn_like(x0)
313
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
314
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
315
+
316
+ @torch.no_grad()
317
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
318
+ use_original_steps=False, callback=None):
319
+
320
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
321
+ timesteps = timesteps[:t_start]
322
+
323
+ time_range = np.flip(timesteps)
324
+ total_steps = timesteps.shape[0]
325
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
326
+
327
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
328
+ x_dec = x_latent
329
+ for i, step in enumerate(iterator):
330
+ index = total_steps - i - 1
331
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
332
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
333
+ unconditional_guidance_scale=unconditional_guidance_scale,
334
+ unconditional_conditioning=unconditional_conditioning)
335
+ if callback: callback(i)
336
+ return x_dec
ttts/AA_diffusion_deprecated/ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,1827 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ import random
10
+ import torch
11
+ import torch.nn as nn
12
+ import numpy as np
13
+ # import pytorch_lightning as pl
14
+ from torch.optim.lr_scheduler import LambdaLR
15
+ from einops import rearrange, repeat
16
+ from contextlib import contextmanager, nullcontext
17
+ from functools import partial
18
+ import itertools
19
+ from tqdm import tqdm
20
+ from torchvision.utils import make_grid
21
+ # from pytorch_lightning.utilities.distributed import rank_zero_only
22
+ from omegaconf import ListConfig
23
+
24
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
25
+ from ldm.modules.ema import LitEma
26
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
27
+ # from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
28
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
29
+ from ldm.models.diffusion.ddim import DDIMSampler
30
+
31
+
32
+ __conditioning_keys__ = {'concat': 'c_concat',
33
+ 'crossattn': 'c_crossattn',
34
+ 'adm': 'y'}
35
+
36
+
37
+ def disabled_train(self, mode=True):
38
+ """Overwrite model.train with this function to make sure train/eval mode
39
+ does not change anymore."""
40
+ return self
41
+
42
+
43
+ def uniform_on_device(r1, r2, shape, device):
44
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
45
+
46
+ # https://www.crosslabs.org//blog/diffusion-with-offset-noise
47
+ def apply_noise_offset(latents, noise, noise_offset, adaptive_noise_scale):
48
+ if noise_offset is None:
49
+ return noise
50
+ if adaptive_noise_scale is not None:
51
+ # latent shape: (batch_size, channels, height, width)
52
+ # abs mean value for each channel
53
+ latent_mean = torch.abs(latents.mean(dim=(2, 3), keepdim=True))
54
+
55
+ # multiply adaptive noise scale to the mean value and add it to the noise offset
56
+ noise_offset = noise_offset + adaptive_noise_scale * latent_mean
57
+ noise_offset = torch.clamp(noise_offset, 0.0, None) # in case of adaptive noise scale is negative
58
+
59
+ noise = noise + noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1), device=latents.device)
60
+ return noise
61
+
62
+ class DDPM(nn.Module):
63
+ # classic DDPM with Gaussian diffusion, in image space
64
+ def __init__(self,
65
+ unet_config,
66
+ timesteps=1000,
67
+ beta_schedule="linear",
68
+ loss_type="l2",
69
+ ckpt_path=None,
70
+ ignore_keys=[],
71
+ load_only_unet=False,
72
+ monitor="val/loss",
73
+ use_ema=True,
74
+ first_stage_key="image",
75
+ image_size=256,
76
+ channels=3,
77
+ log_every_t=100,
78
+ clip_denoised=True,
79
+ linear_start=1e-4,
80
+ linear_end=2e-2,
81
+ cosine_s=8e-3,
82
+ given_betas=None,
83
+ original_elbo_weight=0.,
84
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
85
+ l_simple_weight=1.,
86
+ conditioning_key=None,
87
+ parameterization="eps", # all assuming fixed variance schedules
88
+ scheduler_config=None,
89
+ use_positional_encodings=False,
90
+ learn_logvar=False,
91
+ logvar_init=0.,
92
+ make_it_fit=False,
93
+ ucg_training=None,
94
+ reset_ema=False,
95
+ reset_num_ema_updates=False,
96
+ ):
97
+ super().__init__()
98
+ assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
99
+ self.parameterization = parameterization
100
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
101
+ self.cond_stage_model = None
102
+ self.clip_denoised = clip_denoised
103
+ self.log_every_t = log_every_t
104
+ self.first_stage_key = first_stage_key
105
+ self.image_size = image_size # try conv?
106
+ self.channels = channels
107
+ self.use_positional_encodings = use_positional_encodings
108
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
109
+ count_params(self.model, verbose=True)
110
+ self.use_ema = use_ema
111
+ if self.use_ema:
112
+ self.model_ema = LitEma(self.model)
113
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
114
+
115
+ self.use_scheduler = scheduler_config is not None
116
+ if self.use_scheduler:
117
+ self.scheduler_config = scheduler_config
118
+
119
+ self.v_posterior = v_posterior
120
+ self.original_elbo_weight = original_elbo_weight
121
+ self.l_simple_weight = l_simple_weight
122
+
123
+ if monitor is not None:
124
+ self.monitor = monitor
125
+ self.make_it_fit = make_it_fit
126
+ if reset_ema: assert exists(ckpt_path)
127
+ if ckpt_path is not None:
128
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
129
+ if reset_ema:
130
+ assert self.use_ema
131
+ print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
132
+ self.model_ema = LitEma(self.model)
133
+ if reset_num_ema_updates:
134
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
135
+ assert self.use_ema
136
+ self.model_ema.reset_num_updates()
137
+
138
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
139
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
140
+
141
+ self.loss_type = loss_type
142
+
143
+ self.learn_logvar = learn_logvar
144
+ logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
145
+ if self.learn_logvar:
146
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
147
+ else:
148
+ self.register_buffer('logvar', logvar)
149
+
150
+ self.ucg_training = ucg_training or dict()
151
+ if self.ucg_training:
152
+ self.ucg_prng = np.random.RandomState()
153
+
154
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
155
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
156
+ if exists(given_betas):
157
+ betas = given_betas
158
+ else:
159
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
160
+ cosine_s=cosine_s)
161
+ alphas = 1. - betas
162
+ alphas_cumprod = np.cumprod(alphas, axis=0)
163
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
164
+
165
+ timesteps, = betas.shape
166
+ self.num_timesteps = int(timesteps)
167
+ self.linear_start = linear_start
168
+ self.linear_end = linear_end
169
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
170
+
171
+ to_torch = partial(torch.tensor, dtype=torch.float32)
172
+
173
+ self.register_buffer('betas', to_torch(betas))
174
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
175
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
176
+
177
+ # calculations for diffusion q(x_t | x_{t-1}) and others
178
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
179
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
180
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
181
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
182
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
183
+
184
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
185
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
186
+ 1. - alphas_cumprod) + self.v_posterior * betas
187
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
188
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
189
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
190
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
191
+ self.register_buffer('posterior_mean_coef1', to_torch(
192
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
193
+ self.register_buffer('posterior_mean_coef2', to_torch(
194
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
195
+
196
+ if self.parameterization == "eps":
197
+ lvlb_weights = self.betas ** 2 / (
198
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
199
+ elif self.parameterization == "x0":
200
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
201
+ elif self.parameterization == "v":
202
+ lvlb_weights = torch.ones_like(self.betas ** 2 / (
203
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
204
+ else:
205
+ raise NotImplementedError("mu not supported")
206
+ lvlb_weights[0] = lvlb_weights[1]
207
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
208
+ assert not torch.isnan(self.lvlb_weights).all()
209
+
210
+ @contextmanager
211
+ def ema_scope(self, context=None):
212
+ if self.use_ema:
213
+ self.model_ema.store(self.model.parameters())
214
+ self.model_ema.copy_to(self.model)
215
+ if context is not None:
216
+ print(f"{context}: Switched to EMA weights")
217
+ try:
218
+ yield None
219
+ finally:
220
+ if self.use_ema:
221
+ self.model_ema.restore(self.model.parameters())
222
+ if context is not None:
223
+ print(f"{context}: Restored training weights")
224
+
225
+ @torch.no_grad()
226
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
227
+ sd = torch.load(path, map_location="cpu")
228
+ if "state_dict" in list(sd.keys()):
229
+ sd = sd["state_dict"]
230
+ keys = list(sd.keys())
231
+ for k in keys:
232
+ for ik in ignore_keys:
233
+ if k.startswith(ik):
234
+ print("Deleting key {} from state_dict.".format(k))
235
+ del sd[k]
236
+ if self.make_it_fit:
237
+ n_params = len([name for name, _ in
238
+ itertools.chain(self.named_parameters(),
239
+ self.named_buffers())])
240
+ for name, param in tqdm(
241
+ itertools.chain(self.named_parameters(),
242
+ self.named_buffers()),
243
+ desc="Fitting old weights to new weights",
244
+ total=n_params
245
+ ):
246
+ if not name in sd:
247
+ continue
248
+ old_shape = sd[name].shape
249
+ new_shape = param.shape
250
+ assert len(old_shape) == len(new_shape)
251
+ if len(new_shape) > 2:
252
+ # we only modify first two axes
253
+ assert new_shape[2:] == old_shape[2:]
254
+ # assumes first axis corresponds to output dim
255
+ if not new_shape == old_shape:
256
+ new_param = param.clone()
257
+ old_param = sd[name]
258
+ if len(new_shape) == 1:
259
+ for i in range(new_param.shape[0]):
260
+ new_param[i] = old_param[i % old_shape[0]]
261
+ elif len(new_shape) >= 2:
262
+ for i in range(new_param.shape[0]):
263
+ for j in range(new_param.shape[1]):
264
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
265
+
266
+ n_used_old = torch.ones(old_shape[1])
267
+ for j in range(new_param.shape[1]):
268
+ n_used_old[j % old_shape[1]] += 1
269
+ n_used_new = torch.zeros(new_shape[1])
270
+ for j in range(new_param.shape[1]):
271
+ n_used_new[j] = n_used_old[j % old_shape[1]]
272
+
273
+ n_used_new = n_used_new[None, :]
274
+ while len(n_used_new.shape) < len(new_shape):
275
+ n_used_new = n_used_new.unsqueeze(-1)
276
+ new_param /= n_used_new
277
+
278
+ sd[name] = new_param
279
+
280
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
281
+ sd, strict=False)
282
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
283
+ if len(missing) > 0:
284
+ print(f"Missing Keys:\n {missing}")
285
+ if len(unexpected) > 0:
286
+ print(f"\nUnexpected Keys:\n {unexpected}")
287
+
288
+ def q_mean_variance(self, x_start, t):
289
+ """
290
+ Get the distribution q(x_t | x_0).
291
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
292
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
293
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
294
+ """
295
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
296
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
297
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
298
+ return mean, variance, log_variance
299
+
300
+ def predict_start_from_noise(self, x_t, t, noise):
301
+ return (
302
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
303
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
304
+ )
305
+
306
+ def predict_start_from_z_and_v(self, x_t, t, v):
307
+ # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
308
+ # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
309
+ return (
310
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
311
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
312
+ )
313
+
314
+ def predict_eps_from_z_and_v(self, x_t, t, v):
315
+ return (
316
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
317
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
318
+ )
319
+
320
+ def q_posterior(self, x_start, x_t, t):
321
+ posterior_mean = (
322
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
323
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
324
+ )
325
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
326
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
327
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
328
+
329
+ def p_mean_variance(self, x, t, clip_denoised: bool):
330
+ model_out = self.model(x, t)
331
+ if self.parameterization == "eps":
332
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
333
+ elif self.parameterization == "x0":
334
+ x_recon = model_out
335
+ if clip_denoised:
336
+ x_recon.clamp_(-1., 1.)
337
+
338
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
339
+ return model_mean, posterior_variance, posterior_log_variance
340
+
341
+ @torch.no_grad()
342
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
343
+ b, *_, device = *x.shape, x.device
344
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
345
+ noise = noise_like(x.shape, device, repeat_noise)
346
+ # no noise when t == 0
347
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
348
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
349
+
350
+ @torch.no_grad()
351
+ def p_sample_loop(self, shape, return_intermediates=False):
352
+ device = self.betas.device
353
+ b = shape[0]
354
+ img = torch.randn(shape, device=device)
355
+ intermediates = [img]
356
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
357
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
358
+ clip_denoised=self.clip_denoised)
359
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
360
+ intermediates.append(img)
361
+ if return_intermediates:
362
+ return img, intermediates
363
+ return img
364
+
365
+ @torch.no_grad()
366
+ def sample(self, batch_size=16, return_intermediates=False):
367
+ image_size = self.image_size
368
+ channels = self.channels
369
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
370
+ return_intermediates=return_intermediates)
371
+
372
+ def q_sample(self, x_start, t, noise=None):
373
+ noise = default(noise, lambda: torch.randn_like(x_start))
374
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
375
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
376
+
377
+ def get_v(self, x, noise, t):
378
+ return (
379
+ extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
380
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
381
+ )
382
+
383
+ def get_loss(self, pred, target, mean=True):
384
+ if self.loss_type == 'l1':
385
+ loss = (target - pred).abs()
386
+ if mean:
387
+ loss = loss.mean()
388
+ elif self.loss_type == 'l2':
389
+ if mean:
390
+ loss = torch.nn.functional.mse_loss(target, pred)
391
+ else:
392
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
393
+ else:
394
+ raise NotImplementedError("unknown loss type '{loss_type}'")
395
+
396
+ return loss
397
+
398
+ def p_losses(self, x_start, t, noise=None):
399
+ noise = default(noise, lambda: torch.randn_like(x_start))
400
+ #add offset noise
401
+ # noise = apply_noise_offset(x_start, noise, 0.1, None)
402
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
403
+ model_out = self.model(x_noisy, t)
404
+
405
+ loss_dict = {}
406
+ if self.parameterization == "eps":
407
+ target = noise
408
+ elif self.parameterization == "x0":
409
+ target = x_start
410
+ elif self.parameterization == "v":
411
+ target = self.get_v(x_start, noise, t)
412
+ else:
413
+ raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
414
+
415
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
416
+
417
+ log_prefix = 'train' if self.training else 'val'
418
+
419
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
420
+ loss_simple = loss.mean() * self.l_simple_weight
421
+
422
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
423
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
424
+
425
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
426
+
427
+ loss_dict.update({f'{log_prefix}/loss': loss})
428
+
429
+ return loss, loss_dict
430
+
431
+ def forward(self, x, *args, **kwargs):
432
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
433
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
434
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
435
+ return self.p_losses(x, t, *args, **kwargs)
436
+
437
+ def get_input(self, batch, k):
438
+ x = batch[k]
439
+ # if len(x.shape) == 3:
440
+ # x = x[..., None]
441
+ # x = rearrange(x, 'b h w c -> b c h w')
442
+ x = x.to(memory_format=torch.contiguous_format).float()
443
+ return x
444
+
445
+ def shared_step(self, batch):
446
+ x = self.get_input(batch, self.first_stage_key)
447
+ loss, loss_dict = self(x)
448
+ return loss, loss_dict
449
+
450
+ def training_step(self, batch):
451
+ for k in self.ucg_training:
452
+ p = self.ucg_training[k]["p"]
453
+ val = self.ucg_training[k]["val"]
454
+ if val is None:
455
+ val = ""
456
+ for i in range(len(batch[k])):
457
+ if self.ucg_prng.choice(2, p=[1 - p, p]):
458
+ batch[k][i] = val
459
+
460
+ loss, loss_dict = self.shared_step(batch)
461
+
462
+ # self.log_dict(loss_dict, prog_bar=True,
463
+ # logger=True, on_step=True, on_epoch=True)
464
+
465
+ # self.log("global_step", self.global_step,
466
+ # prog_bar=True, logger=True, on_step=True, on_epoch=False)
467
+
468
+ # if self.use_scheduler:
469
+ # lr = self.optimizers().param_groups[0]['lr']
470
+ # self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
471
+
472
+ return loss
473
+
474
+ @torch.no_grad()
475
+ def validation_step(self, batch, batch_idx):
476
+ _, loss_dict_no_ema = self.shared_step(batch)
477
+ with self.ema_scope():
478
+ _, loss_dict_ema = self.shared_step(batch)
479
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
480
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
481
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
482
+
483
+ def on_train_batch_end(self, *args, **kwargs):
484
+ if self.use_ema:
485
+ self.model_ema(self.model)
486
+
487
+ def _get_rows_from_list(self, samples):
488
+ n_imgs_per_row = len(samples)
489
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
490
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
491
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
492
+ return denoise_grid
493
+
494
+ @torch.no_grad()
495
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
496
+ log = dict()
497
+ x = self.get_input(batch, self.first_stage_key)
498
+ N = min(x.shape[0], N)
499
+ n_row = min(x.shape[0], n_row)
500
+ x = x.to(self.device)[:N]
501
+ log["inputs"] = x
502
+
503
+ # get diffusion row
504
+ diffusion_row = list()
505
+ x_start = x[:n_row]
506
+
507
+ for t in range(self.num_timesteps):
508
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
509
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
510
+ t = t.to(self.device).long()
511
+ noise = torch.randn_like(x_start)
512
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
513
+ diffusion_row.append(x_noisy)
514
+
515
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
516
+
517
+ if sample:
518
+ # get denoise row
519
+ with self.ema_scope("Plotting"):
520
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
521
+
522
+ log["samples"] = samples
523
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
524
+
525
+ if return_keys:
526
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
527
+ return log
528
+ else:
529
+ return {key: log[key] for key in return_keys}
530
+ return log
531
+
532
+ def configure_optimizers(self):
533
+ lr = self.learning_rate
534
+ params = list(self.model.parameters())
535
+ if self.learn_logvar:
536
+ params = params + [self.logvar]
537
+ opt = torch.optim.AdamW(params, lr=lr)
538
+ return opt
539
+
540
+
541
+ class LatentDiffusion(DDPM):
542
+ """main class"""
543
+
544
+ def __init__(self,
545
+ first_stage_config,
546
+ cond_stage_config,
547
+ num_timesteps_cond=None,
548
+ cond_stage_key="image",
549
+ cond_stage_trainable=False,
550
+ concat_mode=True,
551
+ cond_stage_forward=None,
552
+ conditioning_key=None,
553
+ scale_factor=1.0,
554
+ scale_by_std=False,
555
+ force_null_conditioning=False,
556
+ *args, **kwargs):
557
+ self.force_null_conditioning = force_null_conditioning
558
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
559
+ self.scale_by_std = scale_by_std
560
+ assert self.num_timesteps_cond <= kwargs['timesteps']
561
+ # for backwards compatibility after implementation of DiffusionWrapper
562
+ if conditioning_key is None:
563
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
564
+ if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
565
+ conditioning_key = None
566
+ ckpt_path = kwargs.pop("ckpt_path", None)
567
+ reset_ema = kwargs.pop("reset_ema", False)
568
+ reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
569
+ ignore_keys = kwargs.pop("ignore_keys", [])
570
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
571
+ self.concat_mode = concat_mode
572
+ self.cond_stage_trainable = cond_stage_trainable
573
+ self.cond_stage_key = cond_stage_key
574
+ try:
575
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
576
+ except:
577
+ self.num_downs = 0
578
+ if not scale_by_std:
579
+ self.scale_factor = scale_factor
580
+ else:
581
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
582
+ # self.instantiate_first_stage(first_stage_config)
583
+ self.instantiate_cond_stage(cond_stage_config)
584
+ self.cond_stage_forward = cond_stage_forward
585
+ self.clip_denoised = False
586
+ self.bbox_tokenizer = None
587
+
588
+ self.restarted_from_ckpt = False
589
+ if ckpt_path is not None:
590
+ self.init_from_ckpt(ckpt_path, ignore_keys)
591
+ self.restarted_from_ckpt = True
592
+ if reset_ema:
593
+ assert self.use_ema
594
+ print(
595
+ f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
596
+ self.model_ema = LitEma(self.model)
597
+ if reset_num_ema_updates:
598
+ print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
599
+ assert self.use_ema
600
+ self.model_ema.reset_num_updates()
601
+
602
+ def make_cond_schedule(self, ):
603
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
604
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
605
+ self.cond_ids[:self.num_timesteps_cond] = ids
606
+
607
+ # @rank_zero_only
608
+ @torch.no_grad()
609
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
610
+ # only for very first batch
611
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
612
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
613
+ # set rescale weight to 1./std of encodings
614
+ print("### USING STD-RESCALING ###")
615
+ x = super().get_input(batch, self.first_stage_key)
616
+ x = x.to(self.device)
617
+ encoder_posterior = self.encode_first_stage(x)
618
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
619
+ del self.scale_factor
620
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
621
+ print(f"setting self.scale_factor to {self.scale_factor}")
622
+ print("### USING STD-RESCALING ###")
623
+
624
+ def register_schedule(self,
625
+ given_betas=None, beta_schedule="linear", timesteps=1000,
626
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
627
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
628
+
629
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
630
+ if self.shorten_cond_schedule:
631
+ self.make_cond_schedule()
632
+
633
+ def instantiate_first_stage(self, config):
634
+ model = instantiate_from_config(config)
635
+ self.first_stage_model = model.eval()
636
+ self.first_stage_model.train = disabled_train
637
+ for param in self.first_stage_model.parameters():
638
+ param.requires_grad = False
639
+
640
+ def instantiate_cond_stage(self, config):
641
+ if not self.cond_stage_trainable:
642
+ if config == "__is_first_stage__":
643
+ print("Using first stage also as cond stage.")
644
+ self.cond_stage_model = self.first_stage_model
645
+ elif config == "__is_unconditional__":
646
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
647
+ self.cond_stage_model = None
648
+ # self.be_unconditional = True
649
+ else:
650
+ model = instantiate_from_config(config)
651
+ self.cond_stage_model = model.eval()
652
+ self.cond_stage_model.train = disabled_train
653
+ for param in self.cond_stage_model.parameters():
654
+ param.requires_grad = False
655
+ else:
656
+ assert config != '__is_first_stage__'
657
+ assert config != '__is_unconditional__'
658
+ model = instantiate_from_config(config)
659
+ self.cond_stage_model = model
660
+
661
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
662
+ denoise_row = []
663
+ for zd in tqdm(samples, desc=desc):
664
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
665
+ force_not_quantize=force_no_decoder_quantization))
666
+ n_imgs_per_row = len(denoise_row)
667
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
668
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
669
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
670
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
671
+ return denoise_grid
672
+
673
+ def get_first_stage_encoding(self, encoder_posterior):
674
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
675
+ z = encoder_posterior.sample()
676
+ elif isinstance(encoder_posterior, torch.Tensor):
677
+ z = encoder_posterior
678
+ else:
679
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
680
+ return self.scale_factor * z
681
+
682
+ def get_learned_conditioning(self, c):
683
+ if self.cond_stage_forward is None:
684
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
685
+ c = self.cond_stage_model.encode(c)
686
+ if isinstance(c, DiagonalGaussianDistribution):
687
+ c = c.mode()
688
+ else:
689
+ c = self.cond_stage_model(c)
690
+ else:
691
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
692
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
693
+ return c
694
+
695
+ def meshgrid(self, h, w):
696
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
697
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
698
+
699
+ arr = torch.cat([y, x], dim=-1)
700
+ return arr
701
+
702
+ def delta_border(self, h, w):
703
+ """
704
+ :param h: height
705
+ :param w: width
706
+ :return: normalized distance to image border,
707
+ wtith min distance = 0 at border and max dist = 0.5 at image center
708
+ """
709
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
710
+ arr = self.meshgrid(h, w) / lower_right_corner
711
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
712
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
713
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
714
+ return edge_dist
715
+
716
+ def get_weighting(self, h, w, Ly, Lx, device):
717
+ weighting = self.delta_border(h, w)
718
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
719
+ self.split_input_params["clip_max_weight"], )
720
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
721
+
722
+ if self.split_input_params["tie_braker"]:
723
+ L_weighting = self.delta_border(Ly, Lx)
724
+ L_weighting = torch.clip(L_weighting,
725
+ self.split_input_params["clip_min_tie_weight"],
726
+ self.split_input_params["clip_max_tie_weight"])
727
+
728
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
729
+ weighting = weighting * L_weighting
730
+ return weighting
731
+
732
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
733
+ """
734
+ :param x: img of size (bs, c, h, w)
735
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
736
+ """
737
+ bs, nc, h, w = x.shape
738
+
739
+ # number of crops in image
740
+ Ly = (h - kernel_size[0]) // stride[0] + 1
741
+ Lx = (w - kernel_size[1]) // stride[1] + 1
742
+
743
+ if uf == 1 and df == 1:
744
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
745
+ unfold = torch.nn.Unfold(**fold_params)
746
+
747
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
748
+
749
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
750
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
751
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
752
+
753
+ elif uf > 1 and df == 1:
754
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
755
+ unfold = torch.nn.Unfold(**fold_params)
756
+
757
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
758
+ dilation=1, padding=0,
759
+ stride=(stride[0] * uf, stride[1] * uf))
760
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
761
+
762
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
763
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
764
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
765
+
766
+ elif df > 1 and uf == 1:
767
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
768
+ unfold = torch.nn.Unfold(**fold_params)
769
+
770
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
771
+ dilation=1, padding=0,
772
+ stride=(stride[0] // df, stride[1] // df))
773
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
774
+
775
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
776
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
777
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
778
+
779
+ else:
780
+ raise NotImplementedError
781
+
782
+ return fold, unfold, normalization, weighting
783
+
784
+ @torch.no_grad()
785
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
786
+ cond_key=None, return_original_cond=False, bs=None, return_x=False):
787
+ x = super().get_input(batch, k)
788
+ self.device = x.device
789
+ if bs is not None:
790
+ x = x[:bs]
791
+ x = x.to(self.device)
792
+ # encoder_posterior = self.encode_first_stage(x)
793
+ # z = self.get_first_stage_encoding(encoder_posterior).detach()
794
+ z = x
795
+
796
+ if self.model.conditioning_key is not None and not self.force_null_conditioning:
797
+ if cond_key is None:
798
+ cond_key = self.cond_stage_key
799
+ if cond_key != self.first_stage_key:
800
+ if cond_key in ['caption', 'coordinates_bbox', "txt"]:
801
+ xc = batch[cond_key]
802
+ elif cond_key in ['class_label', 'cls']:
803
+ xc = batch
804
+ else:
805
+ xc = super().get_input(batch, cond_key).to(self.device)
806
+ else:
807
+ xc = x
808
+ if not self.cond_stage_trainable or force_c_encode:
809
+ if isinstance(xc, dict) or isinstance(xc, list):
810
+ c = self.get_learned_conditioning(xc)
811
+ else:
812
+ c = self.get_learned_conditioning(xc.to(self.device))
813
+ else:
814
+ c = xc
815
+ if bs is not None:
816
+ c = c[:bs]
817
+
818
+ if self.use_positional_encodings:
819
+ pos_x, pos_y = self.compute_latent_shifts(batch)
820
+ ckey = __conditioning_keys__[self.model.conditioning_key]
821
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
822
+
823
+ else:
824
+ c = None
825
+ xc = None
826
+ if self.use_positional_encodings:
827
+ pos_x, pos_y = self.compute_latent_shifts(batch)
828
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
829
+ out = [z, c]
830
+ if return_first_stage_outputs:
831
+ xrec = self.decode_first_stage(z)
832
+ out.extend([x, xrec])
833
+ if return_x:
834
+ out.extend([x])
835
+ if return_original_cond:
836
+ out.append(xc)
837
+ return out
838
+
839
+ @torch.no_grad()
840
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
841
+ if predict_cids:
842
+ if z.dim() == 4:
843
+ z = torch.argmax(z.exp(), dim=1).long()
844
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
845
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
846
+
847
+ z = 1. / self.scale_factor * z
848
+ return self.first_stage_model.decode(z)
849
+
850
+ @torch.no_grad()
851
+ def encode_first_stage(self, x):
852
+ return self.first_stage_model.encode(x)
853
+
854
+ def shared_step(self, batch, **kwargs):
855
+ x, c = self.get_input(batch, self.first_stage_key)
856
+ loss = self(x, c)
857
+ return loss
858
+ def random_mask_batch_torch(self, cross, cat, mask_probability=0.1):
859
+ unconditioned_batches = torch.rand((cross.shape[0], 1, 1),
860
+ device=cross.device) < mask_probability
861
+ # cross = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(cross.shape[0], 1, cross.shape[-1]), cross)
862
+ cat = torch.where(unconditioned_batches, self.unconditioned_cat_embedding.repeat(cat.shape[0], 1, cat.shape[-1]), cat)
863
+ return cross, cat
864
+ def forward(self, x, c, *args, **kwargs):
865
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
866
+ #classifier-free guidance
867
+ # c['c_crossattn'][0], c['c_concat'][0] = self.random_mask_batch_torch(c['c_crossattn'][0], c['c_concat'][0])
868
+ if self.model.conditioning_key is not None:
869
+ assert c is not None
870
+ if self.cond_stage_trainable:
871
+ c['c_refer'] = c['c_crossattn']
872
+ # c['c_crossattn'] = [self.get_learned_conditioning(c['c_crossattn'][0])]
873
+ c['c_crossattn'] = c['c_crossattn']
874
+ if self.shorten_cond_schedule: # TODO: drop this option
875
+ tc = self.cond_ids[t].to(self.device)
876
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
877
+ return self.p_losses(x, c, t, *args, **kwargs)
878
+
879
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
880
+ if isinstance(cond, dict):
881
+ # hybrid case, cond is expected to be a dict
882
+ pass
883
+ else:
884
+ if not isinstance(cond, list):
885
+ cond = [cond]
886
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
887
+ cond = {key: cond}
888
+
889
+ x_recon = self.model(x_noisy, t, **cond)
890
+
891
+ if isinstance(x_recon, tuple) and not return_ids:
892
+ return x_recon[0]
893
+ else:
894
+ return x_recon
895
+
896
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
897
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
898
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
899
+
900
+ def _prior_bpd(self, x_start):
901
+ """
902
+ Get the prior KL term for the variational lower-bound, measured in
903
+ bits-per-dim.
904
+ This term can't be optimized, as it only depends on the encoder.
905
+ :param x_start: the [N x C x ...] tensor of inputs.
906
+ :return: a batch of [N] KL values (in bits), one per batch element.
907
+ """
908
+ batch_size = x_start.shape[0]
909
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
910
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
911
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
912
+ return mean_flat(kl_prior) / np.log(2.0)
913
+
914
+ def p_losses(self, x_start, cond, t, noise=None):
915
+ noise = default(noise, lambda: torch.randn_like(x_start))
916
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
917
+ model_output = self.apply_model(x_noisy, t, cond)
918
+
919
+ loss_dict = {}
920
+ prefix = 'train' if self.training else 'val'
921
+
922
+ if self.parameterization == "x0":
923
+ target = x_start
924
+ elif self.parameterization == "eps":
925
+ target = noise
926
+ elif self.parameterization == "v":
927
+ target = self.get_v(x_start, noise, t)
928
+ else:
929
+ raise NotImplementedError()
930
+
931
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2])
932
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
933
+
934
+ logvar_t = self.logvar[t].to(self.device)
935
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
936
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
937
+ if self.learn_logvar:
938
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
939
+ loss_dict.update({'logvar': self.logvar.data.mean()})
940
+
941
+ loss = self.l_simple_weight * loss.mean()
942
+
943
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2))
944
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
945
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
946
+ loss += (self.original_elbo_weight * loss_vlb)
947
+ loss_dict.update({f'{prefix}/loss': loss})
948
+
949
+ return loss, loss_dict
950
+
951
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
952
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
953
+ t_in = t
954
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
955
+
956
+ if score_corrector is not None:
957
+ assert self.parameterization == "eps"
958
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
959
+
960
+ if return_codebook_ids:
961
+ model_out, logits = model_out
962
+
963
+ if self.parameterization == "eps":
964
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
965
+ elif self.parameterization == "x0":
966
+ x_recon = model_out
967
+ else:
968
+ raise NotImplementedError()
969
+
970
+ if clip_denoised:
971
+ x_recon.clamp_(-1., 1.)
972
+ if quantize_denoised:
973
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
974
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
975
+ if return_codebook_ids:
976
+ return model_mean, posterior_variance, posterior_log_variance, logits
977
+ elif return_x0:
978
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
979
+ else:
980
+ return model_mean, posterior_variance, posterior_log_variance
981
+
982
+ @torch.no_grad()
983
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
984
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
985
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
986
+ b, *_, device = *x.shape, x.device
987
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
988
+ return_codebook_ids=return_codebook_ids,
989
+ quantize_denoised=quantize_denoised,
990
+ return_x0=return_x0,
991
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
992
+ if return_codebook_ids:
993
+ raise DeprecationWarning("Support dropped.")
994
+ model_mean, _, model_log_variance, logits = outputs
995
+ elif return_x0:
996
+ model_mean, _, model_log_variance, x0 = outputs
997
+ else:
998
+ model_mean, _, model_log_variance = outputs
999
+
1000
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1001
+ if noise_dropout > 0.:
1002
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1003
+ # no noise when t == 0
1004
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1005
+
1006
+ if return_codebook_ids:
1007
+ raise DeprecationWarning("Support dropped.")
1008
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1009
+ if return_x0:
1010
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1011
+ else:
1012
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1013
+
1014
+ @torch.no_grad()
1015
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1016
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1017
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1018
+ log_every_t=None):
1019
+ if not log_every_t:
1020
+ log_every_t = self.log_every_t
1021
+ timesteps = self.num_timesteps
1022
+ if batch_size is not None:
1023
+ b = batch_size if batch_size is not None else shape[0]
1024
+ shape = [batch_size] + list(shape)
1025
+ else:
1026
+ b = batch_size = shape[0]
1027
+ if x_T is None:
1028
+ img = torch.randn(shape, device=self.device)
1029
+ else:
1030
+ img = x_T
1031
+ intermediates = []
1032
+ if cond is not None:
1033
+ if isinstance(cond, dict):
1034
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1035
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1036
+ else:
1037
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1038
+
1039
+ if start_T is not None:
1040
+ timesteps = min(timesteps, start_T)
1041
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1042
+ total=timesteps) if verbose else reversed(
1043
+ range(0, timesteps))
1044
+ if type(temperature) == float:
1045
+ temperature = [temperature] * timesteps
1046
+
1047
+ for i in iterator:
1048
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1049
+ if self.shorten_cond_schedule:
1050
+ assert self.model.conditioning_key != 'hybrid'
1051
+ tc = self.cond_ids[ts].to(cond.device)
1052
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1053
+
1054
+ img, x0_partial = self.p_sample(img, cond, ts,
1055
+ clip_denoised=self.clip_denoised,
1056
+ quantize_denoised=quantize_denoised, return_x0=True,
1057
+ temperature=temperature[i], noise_dropout=noise_dropout,
1058
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1059
+ if mask is not None:
1060
+ assert x0 is not None
1061
+ img_orig = self.q_sample(x0, ts)
1062
+ img = img_orig * mask + (1. - mask) * img
1063
+
1064
+ if i % log_every_t == 0 or i == timesteps - 1:
1065
+ intermediates.append(x0_partial)
1066
+ if callback: callback(i)
1067
+ if img_callback: img_callback(img, i)
1068
+ return img, intermediates
1069
+
1070
+ @torch.no_grad()
1071
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1072
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1073
+ mask=None, x0=None, img_callback=None, start_T=None,
1074
+ log_every_t=None):
1075
+
1076
+ if not log_every_t:
1077
+ log_every_t = self.log_every_t
1078
+ device = self.betas.device
1079
+ b = shape[0]
1080
+ if x_T is None:
1081
+ img = torch.randn(shape, device=device)
1082
+ else:
1083
+ img = x_T
1084
+
1085
+ intermediates = [img]
1086
+ if timesteps is None:
1087
+ timesteps = self.num_timesteps
1088
+
1089
+ if start_T is not None:
1090
+ timesteps = min(timesteps, start_T)
1091
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1092
+ range(0, timesteps))
1093
+
1094
+ if mask is not None:
1095
+ assert x0 is not None
1096
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1097
+
1098
+ for i in iterator:
1099
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1100
+ if self.shorten_cond_schedule:
1101
+ assert self.model.conditioning_key != 'hybrid'
1102
+ tc = self.cond_ids[ts].to(cond.device)
1103
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1104
+
1105
+ img = self.p_sample(img, cond, ts,
1106
+ clip_denoised=self.clip_denoised,
1107
+ quantize_denoised=quantize_denoised)
1108
+ if mask is not None:
1109
+ img_orig = self.q_sample(x0, ts)
1110
+ img = img_orig * mask + (1. - mask) * img
1111
+
1112
+ if i % log_every_t == 0 or i == timesteps - 1:
1113
+ intermediates.append(img)
1114
+ if callback: callback(i)
1115
+ if img_callback: img_callback(img, i)
1116
+
1117
+ if return_intermediates:
1118
+ return img, intermediates
1119
+ return img
1120
+
1121
+ @torch.no_grad()
1122
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1123
+ verbose=True, timesteps=None, quantize_denoised=False,
1124
+ mask=None, x0=None, shape=None, **kwargs):
1125
+ if shape is None:
1126
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1127
+ if cond is not None:
1128
+ if isinstance(cond, dict):
1129
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1130
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1131
+ else:
1132
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1133
+ return self.p_sample_loop(cond,
1134
+ shape,
1135
+ return_intermediates=return_intermediates, x_T=x_T,
1136
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1137
+ mask=mask, x0=x0)
1138
+
1139
+ @torch.no_grad()
1140
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1141
+ if ddim:
1142
+ ddim_sampler = DDIMSampler(self)
1143
+ shape = (self.channels, self.image_size, self.image_size)
1144
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1145
+ shape, cond, verbose=False, **kwargs)
1146
+
1147
+ else:
1148
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1149
+ return_intermediates=True, **kwargs)
1150
+
1151
+ return samples, intermediates
1152
+
1153
+ @torch.no_grad()
1154
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
1155
+ if null_label is not None:
1156
+ xc = null_label
1157
+ if isinstance(xc, ListConfig):
1158
+ xc = list(xc)
1159
+ if isinstance(xc, dict) or isinstance(xc, list):
1160
+ c = self.get_learned_conditioning(xc)
1161
+ else:
1162
+ if hasattr(xc, "to"):
1163
+ xc = xc.to(self.device)
1164
+ c = self.get_learned_conditioning(xc)
1165
+ else:
1166
+ if self.cond_stage_key in ["class_label", "cls"]:
1167
+ xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
1168
+ return self.get_learned_conditioning(xc)
1169
+ else:
1170
+ raise NotImplementedError("todo")
1171
+ if isinstance(c, list): # in case the encoder gives us a list
1172
+ for i in range(len(c)):
1173
+ c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
1174
+ else:
1175
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1176
+ return c
1177
+
1178
+ @torch.no_grad()
1179
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
1180
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1181
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1182
+ use_ema_scope=True,
1183
+ **kwargs):
1184
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1185
+ use_ddim = ddim_steps is not None
1186
+
1187
+ log = dict()
1188
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1189
+ return_first_stage_outputs=True,
1190
+ force_c_encode=True,
1191
+ return_original_cond=True,
1192
+ bs=N)
1193
+ N = min(x.shape[0], N)
1194
+ n_row = min(x.shape[0], n_row)
1195
+ log["inputs"] = x
1196
+ log["reconstruction"] = xrec
1197
+ if self.model.conditioning_key is not None:
1198
+ if hasattr(self.cond_stage_model, "decode"):
1199
+ xc = self.cond_stage_model.decode(c)
1200
+ log["conditioning"] = xc
1201
+ elif self.cond_stage_key in ["caption", "txt"]:
1202
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1203
+ log["conditioning"] = xc
1204
+ elif self.cond_stage_key in ['class_label', "cls"]:
1205
+ try:
1206
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1207
+ log['conditioning'] = xc
1208
+ except KeyError:
1209
+ # probably no "human_label" in batch
1210
+ pass
1211
+ elif isimage(xc):
1212
+ log["conditioning"] = xc
1213
+ if ismap(xc):
1214
+ log["original_conditioning"] = self.to_rgb(xc)
1215
+
1216
+ if plot_diffusion_rows:
1217
+ # get diffusion row
1218
+ diffusion_row = list()
1219
+ z_start = z[:n_row]
1220
+ for t in range(self.num_timesteps):
1221
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1222
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1223
+ t = t.to(self.device).long()
1224
+ noise = torch.randn_like(z_start)
1225
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1226
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1227
+
1228
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1229
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1230
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1231
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1232
+ log["diffusion_row"] = diffusion_grid
1233
+
1234
+ if sample:
1235
+ # get denoise row
1236
+ with ema_scope("Sampling"):
1237
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1238
+ ddim_steps=ddim_steps, eta=ddim_eta)
1239
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1240
+ x_samples = self.decode_first_stage(samples)
1241
+ log["samples"] = x_samples
1242
+ if plot_denoise_rows:
1243
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1244
+ log["denoise_row"] = denoise_grid
1245
+
1246
+ # if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1247
+ # self.first_stage_model, IdentityFirstStage):
1248
+ # # also display when quantizing x0 while sampling
1249
+ # with ema_scope("Plotting Quantized Denoised"):
1250
+ # samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1251
+ # ddim_steps=ddim_steps, eta=ddim_eta,
1252
+ # quantize_denoised=True)
1253
+ # # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1254
+ # # quantize_denoised=True)
1255
+ # x_samples = self.decode_first_stage(samples.to(self.device))
1256
+ # log["samples_x0_quantized"] = x_samples
1257
+
1258
+ if unconditional_guidance_scale > 1.0:
1259
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1260
+ if self.model.conditioning_key == "crossattn-adm":
1261
+ uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
1262
+ with ema_scope("Sampling with classifier-free guidance"):
1263
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1264
+ ddim_steps=ddim_steps, eta=ddim_eta,
1265
+ unconditional_guidance_scale=unconditional_guidance_scale,
1266
+ unconditional_conditioning=uc,
1267
+ )
1268
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1269
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1270
+
1271
+ if inpaint:
1272
+ # make a simple center square
1273
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1274
+ mask = torch.ones(N, h, w).to(self.device)
1275
+ # zeros will be filled in
1276
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1277
+ mask = mask[:, None, ...]
1278
+ with ema_scope("Plotting Inpaint"):
1279
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1280
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1281
+ x_samples = self.decode_first_stage(samples.to(self.device))
1282
+ log["samples_inpainting"] = x_samples
1283
+ log["mask"] = mask
1284
+
1285
+ # outpaint
1286
+ mask = 1. - mask
1287
+ with ema_scope("Plotting Outpaint"):
1288
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1289
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1290
+ x_samples = self.decode_first_stage(samples.to(self.device))
1291
+ log["samples_outpainting"] = x_samples
1292
+
1293
+ if plot_progressive_rows:
1294
+ with ema_scope("Plotting Progressives"):
1295
+ img, progressives = self.progressive_denoising(c,
1296
+ shape=(self.channels, self.image_size, self.image_size),
1297
+ batch_size=N)
1298
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1299
+ log["progressive_row"] = prog_row
1300
+
1301
+ if return_keys:
1302
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1303
+ return log
1304
+ else:
1305
+ return {key: log[key] for key in return_keys}
1306
+ return log
1307
+
1308
+ def configure_optimizers(self):
1309
+ lr = self.learning_rate
1310
+ params = list(self.model.parameters())
1311
+ if self.cond_stage_trainable:
1312
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1313
+ params = params + list(self.cond_stage_model.parameters())
1314
+ if self.learn_logvar:
1315
+ print('Diffusion model optimizing logvar')
1316
+ params.append(self.logvar)
1317
+ opt = torch.optim.AdamW(params, lr=lr)
1318
+ if self.use_scheduler:
1319
+ assert 'target' in self.scheduler_config
1320
+ scheduler = instantiate_from_config(self.scheduler_config)
1321
+
1322
+ print("Setting up LambdaLR scheduler...")
1323
+ scheduler = [
1324
+ {
1325
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1326
+ 'interval': 'step',
1327
+ 'frequency': 1
1328
+ }]
1329
+ return [opt], scheduler
1330
+ return opt
1331
+
1332
+ @torch.no_grad()
1333
+ def to_rgb(self, x):
1334
+ x = x.float()
1335
+ if not hasattr(self, "colorize"):
1336
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1337
+ x = nn.functional.conv2d(x, weight=self.colorize)
1338
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1339
+ return x
1340
+
1341
+
1342
+ class DiffusionWrapper(nn.Module):
1343
+ def __init__(self, diff_model_config, conditioning_key):
1344
+ super().__init__()
1345
+ self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
1346
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1347
+ self.conditioning_key = conditioning_key
1348
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
1349
+
1350
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1351
+ if self.conditioning_key is None:
1352
+ out = self.diffusion_model(x, t)
1353
+ elif self.conditioning_key == 'concat':
1354
+ xc = torch.cat([x] + c_concat, dim=1)
1355
+ out = self.diffusion_model(xc, t)
1356
+ elif self.conditioning_key == 'crossattn':
1357
+ if not self.sequential_cross_attn:
1358
+ cc = torch.cat(c_crossattn, 1)
1359
+ else:
1360
+ cc = c_crossattn
1361
+ out = self.diffusion_model(x, t, context=cc)
1362
+ elif self.conditioning_key == 'hybrid':
1363
+ xc = torch.cat([x] + c_concat, dim=1)
1364
+ cc = torch.cat(c_crossattn, 1)
1365
+ out = self.diffusion_model(xc, t, context=cc)
1366
+ elif self.conditioning_key == 'hybrid-adm':
1367
+ assert c_adm is not None
1368
+ xc = torch.cat([x] + c_concat, dim=1)
1369
+ cc = torch.cat(c_crossattn, 1)
1370
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1371
+ elif self.conditioning_key == 'crossattn-adm':
1372
+ assert c_adm is not None
1373
+ cc = torch.cat(c_crossattn, 1)
1374
+ out = self.diffusion_model(x, t, context=cc, y=c_adm)
1375
+ elif self.conditioning_key == 'adm':
1376
+ cc = c_crossattn[0]
1377
+ out = self.diffusion_model(x, t, y=cc)
1378
+ else:
1379
+ raise NotImplementedError()
1380
+
1381
+ return out
1382
+
1383
+
1384
+ class LatentUpscaleDiffusion(LatentDiffusion):
1385
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
1386
+ super().__init__(*args, **kwargs)
1387
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1388
+ assert not self.cond_stage_trainable
1389
+ self.instantiate_low_stage(low_scale_config)
1390
+ self.low_scale_key = low_scale_key
1391
+ self.noise_level_key = noise_level_key
1392
+
1393
+ def instantiate_low_stage(self, config):
1394
+ model = instantiate_from_config(config)
1395
+ self.low_scale_model = model.eval()
1396
+ self.low_scale_model.train = disabled_train
1397
+ for param in self.low_scale_model.parameters():
1398
+ param.requires_grad = False
1399
+
1400
+ @torch.no_grad()
1401
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1402
+ if not log_mode:
1403
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1404
+ else:
1405
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1406
+ force_c_encode=True, return_original_cond=True, bs=bs)
1407
+ x_low = batch[self.low_scale_key][:bs]
1408
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1409
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1410
+ zx, noise_level = self.low_scale_model(x_low)
1411
+ if self.noise_level_key is not None:
1412
+ # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
1413
+ raise NotImplementedError('TODO')
1414
+
1415
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1416
+ if log_mode:
1417
+ # TODO: maybe disable if too expensive
1418
+ x_low_rec = self.low_scale_model.decode(zx)
1419
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1420
+ return z, all_conds
1421
+
1422
+ @torch.no_grad()
1423
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1424
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1425
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1426
+ **kwargs):
1427
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1428
+ use_ddim = ddim_steps is not None
1429
+
1430
+ log = dict()
1431
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1432
+ log_mode=True)
1433
+ N = min(x.shape[0], N)
1434
+ n_row = min(x.shape[0], n_row)
1435
+ log["inputs"] = x
1436
+ log["reconstruction"] = xrec
1437
+ log["x_lr"] = x_low
1438
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1439
+ if self.model.conditioning_key is not None:
1440
+ if hasattr(self.cond_stage_model, "decode"):
1441
+ xc = self.cond_stage_model.decode(c)
1442
+ log["conditioning"] = xc
1443
+ elif self.cond_stage_key in ["caption", "txt"]:
1444
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1445
+ log["conditioning"] = xc
1446
+ elif self.cond_stage_key in ['class_label', 'cls']:
1447
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1448
+ log['conditioning'] = xc
1449
+ elif isimage(xc):
1450
+ log["conditioning"] = xc
1451
+ if ismap(xc):
1452
+ log["original_conditioning"] = self.to_rgb(xc)
1453
+
1454
+ if plot_diffusion_rows:
1455
+ # get diffusion row
1456
+ diffusion_row = list()
1457
+ z_start = z[:n_row]
1458
+ for t in range(self.num_timesteps):
1459
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1460
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1461
+ t = t.to(self.device).long()
1462
+ noise = torch.randn_like(z_start)
1463
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1464
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1465
+
1466
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1467
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1468
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1469
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1470
+ log["diffusion_row"] = diffusion_grid
1471
+
1472
+ if sample:
1473
+ # get denoise row
1474
+ with ema_scope("Sampling"):
1475
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1476
+ ddim_steps=ddim_steps, eta=ddim_eta)
1477
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1478
+ x_samples = self.decode_first_stage(samples)
1479
+ log["samples"] = x_samples
1480
+ if plot_denoise_rows:
1481
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1482
+ log["denoise_row"] = denoise_grid
1483
+
1484
+ if unconditional_guidance_scale > 1.0:
1485
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1486
+ # TODO explore better "unconditional" choices for the other keys
1487
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1488
+ uc = dict()
1489
+ for k in c:
1490
+ if k == "c_crossattn":
1491
+ assert isinstance(c[k], list) and len(c[k]) == 1
1492
+ uc[k] = [uc_tmp]
1493
+ elif k == "c_adm": # todo: only run with text-based guidance?
1494
+ assert isinstance(c[k], torch.Tensor)
1495
+ #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1496
+ uc[k] = c[k]
1497
+ elif isinstance(c[k], list):
1498
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1499
+ else:
1500
+ uc[k] = c[k]
1501
+
1502
+ with ema_scope("Sampling with classifier-free guidance"):
1503
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1504
+ ddim_steps=ddim_steps, eta=ddim_eta,
1505
+ unconditional_guidance_scale=unconditional_guidance_scale,
1506
+ unconditional_conditioning=uc,
1507
+ )
1508
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1509
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1510
+
1511
+ if plot_progressive_rows:
1512
+ with ema_scope("Plotting Progressives"):
1513
+ img, progressives = self.progressive_denoising(c,
1514
+ shape=(self.channels, self.image_size, self.image_size),
1515
+ batch_size=N)
1516
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1517
+ log["progressive_row"] = prog_row
1518
+
1519
+ return log
1520
+
1521
+
1522
+ class LatentFinetuneDiffusion(LatentDiffusion):
1523
+ """
1524
+ Basis for different finetunas, such as inpainting or depth2image
1525
+ To disable finetuning mode, set finetune_keys to None
1526
+ """
1527
+
1528
+ def __init__(self,
1529
+ concat_keys: tuple,
1530
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1531
+ "model_ema.diffusion_modelinput_blocks00weight"
1532
+ ),
1533
+ keep_finetune_dims=4,
1534
+ # if model was trained without concat mode before and we would like to keep these channels
1535
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
1536
+ c_concat_log_end=None,
1537
+ *args, **kwargs
1538
+ ):
1539
+ ckpt_path = kwargs.pop("ckpt_path", None)
1540
+ ignore_keys = kwargs.pop("ignore_keys", list())
1541
+ super().__init__(*args, **kwargs)
1542
+ self.finetune_keys = finetune_keys
1543
+ self.concat_keys = concat_keys
1544
+ self.keep_dims = keep_finetune_dims
1545
+ self.c_concat_log_start = c_concat_log_start
1546
+ self.c_concat_log_end = c_concat_log_end
1547
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1548
+ if exists(ckpt_path):
1549
+ self.init_from_ckpt(ckpt_path, ignore_keys)
1550
+
1551
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1552
+ sd = torch.load(path, map_location="cpu")
1553
+ if "state_dict" in list(sd.keys()):
1554
+ sd = sd["state_dict"]
1555
+ keys = list(sd.keys())
1556
+ for k in keys:
1557
+ for ik in ignore_keys:
1558
+ if k.startswith(ik):
1559
+ print("Deleting key {} from state_dict.".format(k))
1560
+ del sd[k]
1561
+
1562
+ # make it explicit, finetune by including extra input channels
1563
+ if exists(self.finetune_keys) and k in self.finetune_keys:
1564
+ new_entry = None
1565
+ for name, param in self.named_parameters():
1566
+ if name in self.finetune_keys:
1567
+ print(
1568
+ f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1569
+ new_entry = torch.zeros_like(param) # zero init
1570
+ assert exists(new_entry), 'did not find matching parameter to modify'
1571
+ new_entry[:, :self.keep_dims, ...] = sd[k]
1572
+ sd[k] = new_entry
1573
+
1574
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
1575
+ sd, strict=False)
1576
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1577
+ if len(missing) > 0:
1578
+ print(f"Missing Keys: {missing}")
1579
+ if len(unexpected) > 0:
1580
+ print(f"Unexpected Keys: {unexpected}")
1581
+
1582
+ @torch.no_grad()
1583
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1584
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1585
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1586
+ use_ema_scope=True,
1587
+ **kwargs):
1588
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1589
+ use_ddim = ddim_steps is not None
1590
+
1591
+ log = dict()
1592
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1593
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1594
+ N = min(x.shape[0], N)
1595
+ n_row = min(x.shape[0], n_row)
1596
+ log["inputs"] = x
1597
+ log["reconstruction"] = xrec
1598
+ if self.model.conditioning_key is not None:
1599
+ if hasattr(self.cond_stage_model, "decode"):
1600
+ xc = self.cond_stage_model.decode(c)
1601
+ log["conditioning"] = xc
1602
+ elif self.cond_stage_key in ["caption", "txt"]:
1603
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1604
+ log["conditioning"] = xc
1605
+ elif self.cond_stage_key in ['class_label', 'cls']:
1606
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1607
+ log['conditioning'] = xc
1608
+ elif isimage(xc):
1609
+ log["conditioning"] = xc
1610
+ if ismap(xc):
1611
+ log["original_conditioning"] = self.to_rgb(xc)
1612
+
1613
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1614
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
1615
+
1616
+ if plot_diffusion_rows:
1617
+ # get diffusion row
1618
+ diffusion_row = list()
1619
+ z_start = z[:n_row]
1620
+ for t in range(self.num_timesteps):
1621
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1622
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1623
+ t = t.to(self.device).long()
1624
+ noise = torch.randn_like(z_start)
1625
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1626
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1627
+
1628
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1629
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1630
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1631
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1632
+ log["diffusion_row"] = diffusion_grid
1633
+
1634
+ if sample:
1635
+ # get denoise row
1636
+ with ema_scope("Sampling"):
1637
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1638
+ batch_size=N, ddim=use_ddim,
1639
+ ddim_steps=ddim_steps, eta=ddim_eta)
1640
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1641
+ x_samples = self.decode_first_stage(samples)
1642
+ log["samples"] = x_samples
1643
+ if plot_denoise_rows:
1644
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1645
+ log["denoise_row"] = denoise_grid
1646
+
1647
+ if unconditional_guidance_scale > 1.0:
1648
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1649
+ uc_cat = c_cat
1650
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1651
+ with ema_scope("Sampling with classifier-free guidance"):
1652
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1653
+ batch_size=N, ddim=use_ddim,
1654
+ ddim_steps=ddim_steps, eta=ddim_eta,
1655
+ unconditional_guidance_scale=unconditional_guidance_scale,
1656
+ unconditional_conditioning=uc_full,
1657
+ )
1658
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1659
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1660
+
1661
+ return log
1662
+
1663
+
1664
+ class LatentInpaintDiffusion(LatentFinetuneDiffusion):
1665
+ """
1666
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1667
+ e.g. mask as concat and text via cross-attn.
1668
+ To disable finetuning mode, set finetune_keys to None
1669
+ """
1670
+
1671
+ def __init__(self,
1672
+ concat_keys=("mask", "masked_image"),
1673
+ masked_image_key="masked_image",
1674
+ *args, **kwargs
1675
+ ):
1676
+ super().__init__(concat_keys, *args, **kwargs)
1677
+ self.masked_image_key = masked_image_key
1678
+ assert self.masked_image_key in concat_keys
1679
+
1680
+ @torch.no_grad()
1681
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1682
+ # note: restricted to non-trainable encoders currently
1683
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1684
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1685
+ force_c_encode=True, return_original_cond=True, bs=bs)
1686
+
1687
+ assert exists(self.concat_keys)
1688
+ c_cat = list()
1689
+ for ck in self.concat_keys:
1690
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1691
+ if bs is not None:
1692
+ cc = cc[:bs]
1693
+ cc = cc.to(self.device)
1694
+ bchw = z.shape
1695
+ if ck != self.masked_image_key:
1696
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1697
+ else:
1698
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1699
+ c_cat.append(cc)
1700
+ c_cat = torch.cat(c_cat, dim=1)
1701
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1702
+ if return_first_stage_outputs:
1703
+ return z, all_conds, x, xrec, xc
1704
+ return z, all_conds
1705
+
1706
+ @torch.no_grad()
1707
+ def log_images(self, *args, **kwargs):
1708
+ log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
1709
+ log["masked_image"] = rearrange(args[0]["masked_image"],
1710
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1711
+ return log
1712
+
1713
+
1714
+ class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
1715
+ """
1716
+ condition on monocular depth estimation
1717
+ """
1718
+
1719
+ def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
1720
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1721
+ self.depth_model = instantiate_from_config(depth_stage_config)
1722
+ self.depth_stage_key = concat_keys[0]
1723
+
1724
+ @torch.no_grad()
1725
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1726
+ # note: restricted to non-trainable encoders currently
1727
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
1728
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1729
+ force_c_encode=True, return_original_cond=True, bs=bs)
1730
+
1731
+ assert exists(self.concat_keys)
1732
+ assert len(self.concat_keys) == 1
1733
+ c_cat = list()
1734
+ for ck in self.concat_keys:
1735
+ cc = batch[ck]
1736
+ if bs is not None:
1737
+ cc = cc[:bs]
1738
+ cc = cc.to(self.device)
1739
+ cc = self.depth_model(cc)
1740
+ cc = torch.nn.functional.interpolate(
1741
+ cc,
1742
+ size=z.shape[2:],
1743
+ mode="bicubic",
1744
+ align_corners=False,
1745
+ )
1746
+
1747
+ depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
1748
+ keepdim=True)
1749
+ cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
1750
+ c_cat.append(cc)
1751
+ c_cat = torch.cat(c_cat, dim=1)
1752
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1753
+ if return_first_stage_outputs:
1754
+ return z, all_conds, x, xrec, xc
1755
+ return z, all_conds
1756
+
1757
+ @torch.no_grad()
1758
+ def log_images(self, *args, **kwargs):
1759
+ log = super().log_images(*args, **kwargs)
1760
+ depth = self.depth_model(args[0][self.depth_stage_key])
1761
+ depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
1762
+ torch.amax(depth, dim=[1, 2, 3], keepdim=True)
1763
+ log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
1764
+ return log
1765
+
1766
+
1767
+ class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
1768
+ """
1769
+ condition on low-res image (and optionally on some spatial noise augmentation)
1770
+ """
1771
+ def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
1772
+ low_scale_config=None, low_scale_key=None, *args, **kwargs):
1773
+ super().__init__(concat_keys=concat_keys, *args, **kwargs)
1774
+ self.reshuffle_patch_size = reshuffle_patch_size
1775
+ self.low_scale_model = None
1776
+ if low_scale_config is not None:
1777
+ print("Initializing a low-scale model")
1778
+ assert exists(low_scale_key)
1779
+ self.instantiate_low_stage(low_scale_config)
1780
+ self.low_scale_key = low_scale_key
1781
+
1782
+ def instantiate_low_stage(self, config):
1783
+ model = instantiate_from_config(config)
1784
+ self.low_scale_model = model.eval()
1785
+ self.low_scale_model.train = disabled_train
1786
+ for param in self.low_scale_model.parameters():
1787
+ param.requires_grad = False
1788
+
1789
+ @torch.no_grad()
1790
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1791
+ # note: restricted to non-trainable encoders currently
1792
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
1793
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1794
+ force_c_encode=True, return_original_cond=True, bs=bs)
1795
+
1796
+ assert exists(self.concat_keys)
1797
+ assert len(self.concat_keys) == 1
1798
+ # optionally make spatial noise_level here
1799
+ c_cat = list()
1800
+ noise_level = None
1801
+ for ck in self.concat_keys:
1802
+ cc = batch[ck]
1803
+ cc = rearrange(cc, 'b h w c -> b c h w')
1804
+ if exists(self.reshuffle_patch_size):
1805
+ assert isinstance(self.reshuffle_patch_size, int)
1806
+ cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
1807
+ p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
1808
+ if bs is not None:
1809
+ cc = cc[:bs]
1810
+ cc = cc.to(self.device)
1811
+ if exists(self.low_scale_model) and ck == self.low_scale_key:
1812
+ cc, noise_level = self.low_scale_model(cc)
1813
+ c_cat.append(cc)
1814
+ c_cat = torch.cat(c_cat, dim=1)
1815
+ if exists(noise_level):
1816
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
1817
+ else:
1818
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1819
+ if return_first_stage_outputs:
1820
+ return z, all_conds, x, xrec, xc
1821
+ return z, all_conds
1822
+
1823
+ @torch.no_grad()
1824
+ def log_images(self, *args, **kwargs):
1825
+ log = super().log_images(*args, **kwargs)
1826
+ log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
1827
+ return log
ttts/AA_diffusion_deprecated/ldm/models/diffusion/dpm_solver/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sampler import DPMSolverSampler
ttts/AA_diffusion_deprecated/ldm/models/diffusion/dpm_solver/dpm_solver.py ADDED
@@ -0,0 +1,1154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+ from tqdm import tqdm
5
+
6
+
7
+ class NoiseScheduleVP:
8
+ def __init__(
9
+ self,
10
+ schedule='discrete',
11
+ betas=None,
12
+ alphas_cumprod=None,
13
+ continuous_beta_0=0.1,
14
+ continuous_beta_1=20.,
15
+ ):
16
+ """Create a wrapper class for the forward SDE (VP type).
17
+ ***
18
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
+ ***
21
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
22
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
23
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
24
+ log_alpha_t = self.marginal_log_mean_coeff(t)
25
+ sigma_t = self.marginal_std(t)
26
+ lambda_t = self.marginal_lambda(t)
27
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
28
+ t = self.inverse_lambda(lambda_t)
29
+ ===============================================================
30
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
31
+ 1. For discrete-time DPMs:
32
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
33
+ t_i = (i + 1) / N
34
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
35
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
36
+ Args:
37
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
38
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
39
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
40
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
41
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
42
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
43
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
44
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
45
+ and
46
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
47
+ 2. For continuous-time DPMs:
48
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
49
+ schedule are the default settings in DDPM and improved-DDPM:
50
+ Args:
51
+ beta_min: A `float` number. The smallest beta for the linear schedule.
52
+ beta_max: A `float` number. The largest beta for the linear schedule.
53
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
54
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
55
+ T: A `float` number. The ending time of the forward process.
56
+ ===============================================================
57
+ Args:
58
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
59
+ 'linear' or 'cosine' for continuous-time DPMs.
60
+ Returns:
61
+ A wrapper object of the forward SDE (VP type).
62
+
63
+ ===============================================================
64
+ Example:
65
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
66
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
67
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
68
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
69
+ # For continuous-time DPMs (VPSDE), linear schedule:
70
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
71
+ """
72
+
73
+ if schedule not in ['discrete', 'linear', 'cosine']:
74
+ raise ValueError(
75
+ "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
76
+ schedule))
77
+
78
+ self.schedule = schedule
79
+ if schedule == 'discrete':
80
+ if betas is not None:
81
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
82
+ else:
83
+ assert alphas_cumprod is not None
84
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
85
+ self.total_N = len(log_alphas)
86
+ self.T = 1.
87
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
88
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
89
+ else:
90
+ self.total_N = 1000
91
+ self.beta_0 = continuous_beta_0
92
+ self.beta_1 = continuous_beta_1
93
+ self.cosine_s = 0.008
94
+ self.cosine_beta_max = 999.
95
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
96
+ 1. + self.cosine_s) / math.pi - self.cosine_s
97
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
98
+ self.schedule = schedule
99
+ if schedule == 'cosine':
100
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
101
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
102
+ self.T = 0.9946
103
+ else:
104
+ self.T = 1.
105
+
106
+ def marginal_log_mean_coeff(self, t):
107
+ """
108
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
109
+ """
110
+ if self.schedule == 'discrete':
111
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
112
+ self.log_alpha_array.to(t.device)).reshape((-1))
113
+ elif self.schedule == 'linear':
114
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
115
+ elif self.schedule == 'cosine':
116
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
117
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
118
+ return log_alpha_t
119
+
120
+ def marginal_alpha(self, t):
121
+ """
122
+ Compute alpha_t of a given continuous-time label t in [0, T].
123
+ """
124
+ return torch.exp(self.marginal_log_mean_coeff(t))
125
+
126
+ def marginal_std(self, t):
127
+ """
128
+ Compute sigma_t of a given continuous-time label t in [0, T].
129
+ """
130
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
131
+
132
+ def marginal_lambda(self, t):
133
+ """
134
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
135
+ """
136
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
137
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
138
+ return log_mean_coeff - log_std
139
+
140
+ def inverse_lambda(self, lamb):
141
+ """
142
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
143
+ """
144
+ if self.schedule == 'linear':
145
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
146
+ Delta = self.beta_0 ** 2 + tmp
147
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
148
+ elif self.schedule == 'discrete':
149
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
150
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
151
+ torch.flip(self.t_array.to(lamb.device), [1]))
152
+ return t.reshape((-1,))
153
+ else:
154
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
155
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
156
+ 1. + self.cosine_s) / math.pi - self.cosine_s
157
+ t = t_fn(log_alpha)
158
+ return t
159
+
160
+
161
+ def model_wrapper(
162
+ model,
163
+ noise_schedule,
164
+ model_type="noise",
165
+ model_kwargs={},
166
+ guidance_type="uncond",
167
+ condition=None,
168
+ unconditional_condition=None,
169
+ guidance_scale=1.,
170
+ classifier_fn=None,
171
+ classifier_kwargs={},
172
+ ):
173
+ """Create a wrapper function for the noise prediction model.
174
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
175
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
176
+ We support four types of the diffusion model by setting `model_type`:
177
+ 1. "noise": noise prediction model. (Trained by predicting noise).
178
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
179
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
180
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
181
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
182
+ arXiv preprint arXiv:2202.00512 (2022).
183
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
184
+ arXiv preprint arXiv:2210.02303 (2022).
185
+
186
+ 4. "score": marginal score function. (Trained by denoising score matching).
187
+ Note that the score function and the noise prediction model follows a simple relationship:
188
+ ```
189
+ noise(x_t, t) = -sigma_t * score(x_t, t)
190
+ ```
191
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
192
+ 1. "uncond": unconditional sampling by DPMs.
193
+ The input `model` has the following format:
194
+ ``
195
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
196
+ ``
197
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
198
+ The input `model` has the following format:
199
+ ``
200
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
201
+ ``
202
+ The input `classifier_fn` has the following format:
203
+ ``
204
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
205
+ ``
206
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
207
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
208
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
209
+ The input `model` has the following format:
210
+ ``
211
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
212
+ ``
213
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
214
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
215
+ arXiv preprint arXiv:2207.12598 (2022).
216
+
217
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
218
+ or continuous-time labels (i.e. epsilon to T).
219
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
220
+ ``
221
+ def model_fn(x, t_continuous) -> noise:
222
+ t_input = get_model_input_time(t_continuous)
223
+ return noise_pred(model, x, t_input, **model_kwargs)
224
+ ``
225
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
226
+ ===============================================================
227
+ Args:
228
+ model: A diffusion model with the corresponding format described above.
229
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
230
+ model_type: A `str`. The parameterization type of the diffusion model.
231
+ "noise" or "x_start" or "v" or "score".
232
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
233
+ guidance_type: A `str`. The type of the guidance for sampling.
234
+ "uncond" or "classifier" or "classifier-free".
235
+ condition: A pytorch tensor. The condition for the guided sampling.
236
+ Only used for "classifier" or "classifier-free" guidance type.
237
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
238
+ Only used for "classifier-free" guidance type.
239
+ guidance_scale: A `float`. The scale for the guided sampling.
240
+ classifier_fn: A classifier function. Only used for the classifier guidance.
241
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
242
+ Returns:
243
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
244
+ """
245
+
246
+ def get_model_input_time(t_continuous):
247
+ """
248
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
249
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
250
+ For continuous-time DPMs, we just use `t_continuous`.
251
+ """
252
+ if noise_schedule.schedule == 'discrete':
253
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
254
+ else:
255
+ return t_continuous
256
+
257
+ def noise_pred_fn(x, t_continuous, cond=None):
258
+ if t_continuous.reshape((-1,)).shape[0] == 1:
259
+ t_continuous = t_continuous.expand((x.shape[0]))
260
+ t_input = get_model_input_time(t_continuous)
261
+ if cond is None:
262
+ output = model(x, t_input, **model_kwargs)
263
+ else:
264
+ output = model(x, t_input, cond, **model_kwargs)
265
+ if model_type == "noise":
266
+ return output
267
+ elif model_type == "x_start":
268
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
269
+ dims = x.dim()
270
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
271
+ elif model_type == "v":
272
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
273
+ dims = x.dim()
274
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
275
+ elif model_type == "score":
276
+ sigma_t = noise_schedule.marginal_std(t_continuous)
277
+ dims = x.dim()
278
+ return -expand_dims(sigma_t, dims) * output
279
+
280
+ def cond_grad_fn(x, t_input):
281
+ """
282
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
283
+ """
284
+ with torch.enable_grad():
285
+ x_in = x.detach().requires_grad_(True)
286
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
287
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
288
+
289
+ def model_fn(x, t_continuous):
290
+ """
291
+ The noise predicition model function that is used for DPM-Solver.
292
+ """
293
+ if t_continuous.reshape((-1,)).shape[0] == 1:
294
+ t_continuous = t_continuous.expand((x.shape[0]))
295
+ if guidance_type == "uncond":
296
+ return noise_pred_fn(x, t_continuous)
297
+ elif guidance_type == "classifier":
298
+ assert classifier_fn is not None
299
+ t_input = get_model_input_time(t_continuous)
300
+ cond_grad = cond_grad_fn(x, t_input)
301
+ sigma_t = noise_schedule.marginal_std(t_continuous)
302
+ noise = noise_pred_fn(x, t_continuous)
303
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
304
+ elif guidance_type == "classifier-free":
305
+ if guidance_scale == 1. or unconditional_condition is None:
306
+ return noise_pred_fn(x, t_continuous, cond=condition)
307
+ else:
308
+ x_in = torch.cat([x] * 2)
309
+ t_in = torch.cat([t_continuous] * 2)
310
+ c_in = torch.cat([unconditional_condition, condition])
311
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
312
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
313
+
314
+ assert model_type in ["noise", "x_start", "v"]
315
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
316
+ return model_fn
317
+
318
+
319
+ class DPM_Solver:
320
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
321
+ """Construct a DPM-Solver.
322
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
323
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
324
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
325
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
326
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
327
+ Args:
328
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
329
+ ``
330
+ def model_fn(x, t_continuous):
331
+ return noise
332
+ ``
333
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
334
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
335
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
336
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
337
+
338
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
339
+ """
340
+ self.model = model_fn
341
+ self.noise_schedule = noise_schedule
342
+ self.predict_x0 = predict_x0
343
+ self.thresholding = thresholding
344
+ self.max_val = max_val
345
+
346
+ def noise_prediction_fn(self, x, t):
347
+ """
348
+ Return the noise prediction model.
349
+ """
350
+ return self.model(x, t)
351
+
352
+ def data_prediction_fn(self, x, t):
353
+ """
354
+ Return the data prediction model (with thresholding).
355
+ """
356
+ noise = self.noise_prediction_fn(x, t)
357
+ dims = x.dim()
358
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
359
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
360
+ if self.thresholding:
361
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
362
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
363
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
364
+ x0 = torch.clamp(x0, -s, s) / s
365
+ return x0
366
+
367
+ def model_fn(self, x, t):
368
+ """
369
+ Convert the model to the noise prediction model or the data prediction model.
370
+ """
371
+ if self.predict_x0:
372
+ return self.data_prediction_fn(x, t)
373
+ else:
374
+ return self.noise_prediction_fn(x, t)
375
+
376
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
377
+ """Compute the intermediate time steps for sampling.
378
+ Args:
379
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
380
+ - 'logSNR': uniform logSNR for the time steps.
381
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
382
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
383
+ t_T: A `float`. The starting time of the sampling (default is T).
384
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
385
+ N: A `int`. The total number of the spacing of the time steps.
386
+ device: A torch device.
387
+ Returns:
388
+ A pytorch tensor of the time steps, with the shape (N + 1,).
389
+ """
390
+ if skip_type == 'logSNR':
391
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
392
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
393
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
394
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
395
+ elif skip_type == 'time_uniform':
396
+ return torch.linspace(t_T, t_0, N + 1).to(device)
397
+ elif skip_type == 'time_quadratic':
398
+ t_order = 2
399
+ t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
400
+ return t
401
+ else:
402
+ raise ValueError(
403
+ "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
404
+
405
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
406
+ """
407
+ Get the order of each step for sampling by the singlestep DPM-Solver.
408
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
409
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
410
+ - If order == 1:
411
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
412
+ - If order == 2:
413
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
414
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
415
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
416
+ - If order == 3:
417
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
418
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
419
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
420
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
421
+ ============================================
422
+ Args:
423
+ order: A `int`. The max order for the solver (2 or 3).
424
+ steps: A `int`. The total number of function evaluations (NFE).
425
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
426
+ - 'logSNR': uniform logSNR for the time steps.
427
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
428
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
429
+ t_T: A `float`. The starting time of the sampling (default is T).
430
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
431
+ device: A torch device.
432
+ Returns:
433
+ orders: A list of the solver order of each step.
434
+ """
435
+ if order == 3:
436
+ K = steps // 3 + 1
437
+ if steps % 3 == 0:
438
+ orders = [3, ] * (K - 2) + [2, 1]
439
+ elif steps % 3 == 1:
440
+ orders = [3, ] * (K - 1) + [1]
441
+ else:
442
+ orders = [3, ] * (K - 1) + [2]
443
+ elif order == 2:
444
+ if steps % 2 == 0:
445
+ K = steps // 2
446
+ orders = [2, ] * K
447
+ else:
448
+ K = steps // 2 + 1
449
+ orders = [2, ] * (K - 1) + [1]
450
+ elif order == 1:
451
+ K = 1
452
+ orders = [1, ] * steps
453
+ else:
454
+ raise ValueError("'order' must be '1' or '2' or '3'.")
455
+ if skip_type == 'logSNR':
456
+ # To reproduce the results in DPM-Solver paper
457
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
458
+ else:
459
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
460
+ torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
461
+ return timesteps_outer, orders
462
+
463
+ def denoise_to_zero_fn(self, x, s):
464
+ """
465
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
466
+ """
467
+ return self.data_prediction_fn(x, s)
468
+
469
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
470
+ """
471
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
472
+ Args:
473
+ x: A pytorch tensor. The initial value at time `s`.
474
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
475
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
476
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
477
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
478
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
479
+ Returns:
480
+ x_t: A pytorch tensor. The approximated solution at time `t`.
481
+ """
482
+ ns = self.noise_schedule
483
+ dims = x.dim()
484
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
485
+ h = lambda_t - lambda_s
486
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
487
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
488
+ alpha_t = torch.exp(log_alpha_t)
489
+
490
+ if self.predict_x0:
491
+ phi_1 = torch.expm1(-h)
492
+ if model_s is None:
493
+ model_s = self.model_fn(x, s)
494
+ x_t = (
495
+ expand_dims(sigma_t / sigma_s, dims) * x
496
+ - expand_dims(alpha_t * phi_1, dims) * model_s
497
+ )
498
+ if return_intermediate:
499
+ return x_t, {'model_s': model_s}
500
+ else:
501
+ return x_t
502
+ else:
503
+ phi_1 = torch.expm1(h)
504
+ if model_s is None:
505
+ model_s = self.model_fn(x, s)
506
+ x_t = (
507
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
508
+ - expand_dims(sigma_t * phi_1, dims) * model_s
509
+ )
510
+ if return_intermediate:
511
+ return x_t, {'model_s': model_s}
512
+ else:
513
+ return x_t
514
+
515
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
516
+ solver_type='dpm_solver'):
517
+ """
518
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
519
+ Args:
520
+ x: A pytorch tensor. The initial value at time `s`.
521
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
522
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
523
+ r1: A `float`. The hyperparameter of the second-order solver.
524
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
525
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
526
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
527
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
528
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
529
+ Returns:
530
+ x_t: A pytorch tensor. The approximated solution at time `t`.
531
+ """
532
+ if solver_type not in ['dpm_solver', 'taylor']:
533
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
534
+ if r1 is None:
535
+ r1 = 0.5
536
+ ns = self.noise_schedule
537
+ dims = x.dim()
538
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
539
+ h = lambda_t - lambda_s
540
+ lambda_s1 = lambda_s + r1 * h
541
+ s1 = ns.inverse_lambda(lambda_s1)
542
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
543
+ s1), ns.marginal_log_mean_coeff(t)
544
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
545
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
546
+
547
+ if self.predict_x0:
548
+ phi_11 = torch.expm1(-r1 * h)
549
+ phi_1 = torch.expm1(-h)
550
+
551
+ if model_s is None:
552
+ model_s = self.model_fn(x, s)
553
+ x_s1 = (
554
+ expand_dims(sigma_s1 / sigma_s, dims) * x
555
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
556
+ )
557
+ model_s1 = self.model_fn(x_s1, s1)
558
+ if solver_type == 'dpm_solver':
559
+ x_t = (
560
+ expand_dims(sigma_t / sigma_s, dims) * x
561
+ - expand_dims(alpha_t * phi_1, dims) * model_s
562
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
563
+ )
564
+ elif solver_type == 'taylor':
565
+ x_t = (
566
+ expand_dims(sigma_t / sigma_s, dims) * x
567
+ - expand_dims(alpha_t * phi_1, dims) * model_s
568
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
569
+ model_s1 - model_s)
570
+ )
571
+ else:
572
+ phi_11 = torch.expm1(r1 * h)
573
+ phi_1 = torch.expm1(h)
574
+
575
+ if model_s is None:
576
+ model_s = self.model_fn(x, s)
577
+ x_s1 = (
578
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
579
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
580
+ )
581
+ model_s1 = self.model_fn(x_s1, s1)
582
+ if solver_type == 'dpm_solver':
583
+ x_t = (
584
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
585
+ - expand_dims(sigma_t * phi_1, dims) * model_s
586
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
587
+ )
588
+ elif solver_type == 'taylor':
589
+ x_t = (
590
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
591
+ - expand_dims(sigma_t * phi_1, dims) * model_s
592
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
593
+ )
594
+ if return_intermediate:
595
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
596
+ else:
597
+ return x_t
598
+
599
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
600
+ return_intermediate=False, solver_type='dpm_solver'):
601
+ """
602
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
603
+ Args:
604
+ x: A pytorch tensor. The initial value at time `s`.
605
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
606
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
607
+ r1: A `float`. The hyperparameter of the third-order solver.
608
+ r2: A `float`. The hyperparameter of the third-order solver.
609
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
610
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
611
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
612
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
613
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
614
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
615
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
616
+ Returns:
617
+ x_t: A pytorch tensor. The approximated solution at time `t`.
618
+ """
619
+ if solver_type not in ['dpm_solver', 'taylor']:
620
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
621
+ if r1 is None:
622
+ r1 = 1. / 3.
623
+ if r2 is None:
624
+ r2 = 2. / 3.
625
+ ns = self.noise_schedule
626
+ dims = x.dim()
627
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
628
+ h = lambda_t - lambda_s
629
+ lambda_s1 = lambda_s + r1 * h
630
+ lambda_s2 = lambda_s + r2 * h
631
+ s1 = ns.inverse_lambda(lambda_s1)
632
+ s2 = ns.inverse_lambda(lambda_s2)
633
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
634
+ s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
635
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
636
+ s2), ns.marginal_std(t)
637
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
638
+
639
+ if self.predict_x0:
640
+ phi_11 = torch.expm1(-r1 * h)
641
+ phi_12 = torch.expm1(-r2 * h)
642
+ phi_1 = torch.expm1(-h)
643
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
644
+ phi_2 = phi_1 / h + 1.
645
+ phi_3 = phi_2 / h - 0.5
646
+
647
+ if model_s is None:
648
+ model_s = self.model_fn(x, s)
649
+ if model_s1 is None:
650
+ x_s1 = (
651
+ expand_dims(sigma_s1 / sigma_s, dims) * x
652
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
653
+ )
654
+ model_s1 = self.model_fn(x_s1, s1)
655
+ x_s2 = (
656
+ expand_dims(sigma_s2 / sigma_s, dims) * x
657
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
658
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
659
+ )
660
+ model_s2 = self.model_fn(x_s2, s2)
661
+ if solver_type == 'dpm_solver':
662
+ x_t = (
663
+ expand_dims(sigma_t / sigma_s, dims) * x
664
+ - expand_dims(alpha_t * phi_1, dims) * model_s
665
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
666
+ )
667
+ elif solver_type == 'taylor':
668
+ D1_0 = (1. / r1) * (model_s1 - model_s)
669
+ D1_1 = (1. / r2) * (model_s2 - model_s)
670
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
671
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
672
+ x_t = (
673
+ expand_dims(sigma_t / sigma_s, dims) * x
674
+ - expand_dims(alpha_t * phi_1, dims) * model_s
675
+ + expand_dims(alpha_t * phi_2, dims) * D1
676
+ - expand_dims(alpha_t * phi_3, dims) * D2
677
+ )
678
+ else:
679
+ phi_11 = torch.expm1(r1 * h)
680
+ phi_12 = torch.expm1(r2 * h)
681
+ phi_1 = torch.expm1(h)
682
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
683
+ phi_2 = phi_1 / h - 1.
684
+ phi_3 = phi_2 / h - 0.5
685
+
686
+ if model_s is None:
687
+ model_s = self.model_fn(x, s)
688
+ if model_s1 is None:
689
+ x_s1 = (
690
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
691
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
692
+ )
693
+ model_s1 = self.model_fn(x_s1, s1)
694
+ x_s2 = (
695
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
696
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
697
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
698
+ )
699
+ model_s2 = self.model_fn(x_s2, s2)
700
+ if solver_type == 'dpm_solver':
701
+ x_t = (
702
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
703
+ - expand_dims(sigma_t * phi_1, dims) * model_s
704
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
705
+ )
706
+ elif solver_type == 'taylor':
707
+ D1_0 = (1. / r1) * (model_s1 - model_s)
708
+ D1_1 = (1. / r2) * (model_s2 - model_s)
709
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
710
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
711
+ x_t = (
712
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
713
+ - expand_dims(sigma_t * phi_1, dims) * model_s
714
+ - expand_dims(sigma_t * phi_2, dims) * D1
715
+ - expand_dims(sigma_t * phi_3, dims) * D2
716
+ )
717
+
718
+ if return_intermediate:
719
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
720
+ else:
721
+ return x_t
722
+
723
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
724
+ """
725
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
726
+ Args:
727
+ x: A pytorch tensor. The initial value at time `s`.
728
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
729
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
730
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
731
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
732
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
733
+ Returns:
734
+ x_t: A pytorch tensor. The approximated solution at time `t`.
735
+ """
736
+ if solver_type not in ['dpm_solver', 'taylor']:
737
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
738
+ ns = self.noise_schedule
739
+ dims = x.dim()
740
+ model_prev_1, model_prev_0 = model_prev_list
741
+ t_prev_1, t_prev_0 = t_prev_list
742
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
743
+ t_prev_0), ns.marginal_lambda(t)
744
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
745
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
746
+ alpha_t = torch.exp(log_alpha_t)
747
+
748
+ h_0 = lambda_prev_0 - lambda_prev_1
749
+ h = lambda_t - lambda_prev_0
750
+ r0 = h_0 / h
751
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
752
+ if self.predict_x0:
753
+ if solver_type == 'dpm_solver':
754
+ x_t = (
755
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
756
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
757
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
758
+ )
759
+ elif solver_type == 'taylor':
760
+ x_t = (
761
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
762
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
763
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
764
+ )
765
+ else:
766
+ if solver_type == 'dpm_solver':
767
+ x_t = (
768
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
769
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
770
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
771
+ )
772
+ elif solver_type == 'taylor':
773
+ x_t = (
774
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
775
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
776
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
777
+ )
778
+ return x_t
779
+
780
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
781
+ """
782
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
783
+ Args:
784
+ x: A pytorch tensor. The initial value at time `s`.
785
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
786
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
787
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
788
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
789
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
790
+ Returns:
791
+ x_t: A pytorch tensor. The approximated solution at time `t`.
792
+ """
793
+ ns = self.noise_schedule
794
+ dims = x.dim()
795
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
796
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
797
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
798
+ t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
799
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
800
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
801
+ alpha_t = torch.exp(log_alpha_t)
802
+
803
+ h_1 = lambda_prev_1 - lambda_prev_2
804
+ h_0 = lambda_prev_0 - lambda_prev_1
805
+ h = lambda_t - lambda_prev_0
806
+ r0, r1 = h_0 / h, h_1 / h
807
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
808
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
809
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
810
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
811
+ if self.predict_x0:
812
+ x_t = (
813
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
814
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
815
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
816
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
817
+ )
818
+ else:
819
+ x_t = (
820
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
821
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
822
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
823
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
824
+ )
825
+ return x_t
826
+
827
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
828
+ r2=None):
829
+ """
830
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
831
+ Args:
832
+ x: A pytorch tensor. The initial value at time `s`.
833
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
834
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
835
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
836
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
837
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
838
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
839
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
840
+ r2: A `float`. The hyperparameter of the third-order solver.
841
+ Returns:
842
+ x_t: A pytorch tensor. The approximated solution at time `t`.
843
+ """
844
+ if order == 1:
845
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
846
+ elif order == 2:
847
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
848
+ solver_type=solver_type, r1=r1)
849
+ elif order == 3:
850
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
851
+ solver_type=solver_type, r1=r1, r2=r2)
852
+ else:
853
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
854
+
855
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
856
+ """
857
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
858
+ Args:
859
+ x: A pytorch tensor. The initial value at time `s`.
860
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
861
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
862
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
863
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
864
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
865
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
866
+ Returns:
867
+ x_t: A pytorch tensor. The approximated solution at time `t`.
868
+ """
869
+ if order == 1:
870
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
871
+ elif order == 2:
872
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
873
+ elif order == 3:
874
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
875
+ else:
876
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
877
+
878
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
879
+ solver_type='dpm_solver'):
880
+ """
881
+ The adaptive step size solver based on singlestep DPM-Solver.
882
+ Args:
883
+ x: A pytorch tensor. The initial value at time `t_T`.
884
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
885
+ t_T: A `float`. The starting time of the sampling (default is T).
886
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
887
+ h_init: A `float`. The initial step size (for logSNR).
888
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
889
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
890
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
891
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
892
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
893
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
894
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
895
+ Returns:
896
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
897
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
898
+ """
899
+ ns = self.noise_schedule
900
+ s = t_T * torch.ones((x.shape[0],)).to(x)
901
+ lambda_s = ns.marginal_lambda(s)
902
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
903
+ h = h_init * torch.ones_like(s).to(x)
904
+ x_prev = x
905
+ nfe = 0
906
+ if order == 2:
907
+ r1 = 0.5
908
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
909
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
910
+ solver_type=solver_type,
911
+ **kwargs)
912
+ elif order == 3:
913
+ r1, r2 = 1. / 3., 2. / 3.
914
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
915
+ return_intermediate=True,
916
+ solver_type=solver_type)
917
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
918
+ solver_type=solver_type,
919
+ **kwargs)
920
+ else:
921
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
922
+ while torch.abs((s - t_0)).mean() > t_err:
923
+ t = ns.inverse_lambda(lambda_s + h)
924
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
925
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
926
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
927
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
928
+ E = norm_fn((x_higher - x_lower) / delta).max()
929
+ if torch.all(E <= 1.):
930
+ x = x_higher
931
+ s = t
932
+ x_prev = x_lower
933
+ lambda_s = ns.marginal_lambda(s)
934
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
935
+ nfe += order
936
+ print('adaptive solver nfe', nfe)
937
+ return x
938
+
939
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
940
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
941
+ atol=0.0078, rtol=0.05,
942
+ ):
943
+ """
944
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
945
+ =====================================================
946
+ We support the following algorithms for both noise prediction model and data prediction model:
947
+ - 'singlestep':
948
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
949
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
950
+ The total number of function evaluations (NFE) == `steps`.
951
+ Given a fixed NFE == `steps`, the sampling procedure is:
952
+ - If `order` == 1:
953
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
954
+ - If `order` == 2:
955
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
956
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
957
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
958
+ - If `order` == 3:
959
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
960
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
961
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
962
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
963
+ - 'multistep':
964
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
965
+ We initialize the first `order` values by lower order multistep solvers.
966
+ Given a fixed NFE == `steps`, the sampling procedure is:
967
+ Denote K = steps.
968
+ - If `order` == 1:
969
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
970
+ - If `order` == 2:
971
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
972
+ - If `order` == 3:
973
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
974
+ - 'singlestep_fixed':
975
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
976
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
977
+ - 'adaptive':
978
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
979
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
980
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
981
+ (NFE) and the sample quality.
982
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
983
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
984
+ =====================================================
985
+ Some advices for choosing the algorithm:
986
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
987
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
988
+ e.g.
989
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
990
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
991
+ skip_type='time_uniform', method='singlestep')
992
+ - For **guided sampling with large guidance scale** by DPMs:
993
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
994
+ e.g.
995
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
996
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
997
+ skip_type='time_uniform', method='multistep')
998
+ We support three types of `skip_type`:
999
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1000
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1001
+ - 'time_quadratic': quadratic time for the time steps.
1002
+ =====================================================
1003
+ Args:
1004
+ x: A pytorch tensor. The initial value at time `t_start`
1005
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1006
+ steps: A `int`. The total number of function evaluations (NFE).
1007
+ t_start: A `float`. The starting time of the sampling.
1008
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1009
+ t_end: A `float`. The ending time of the sampling.
1010
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1011
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1012
+ For discrete-time DPMs:
1013
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1014
+ For continuous-time DPMs:
1015
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1016
+ order: A `int`. The order of DPM-Solver.
1017
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1018
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1019
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1020
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1021
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1022
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1023
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
1024
+ (such as CIFAR-10). However, we observed that such trick does not matter for
1025
+ high-resolutional images. As it needs an additional NFE, we do not recommend
1026
+ it for high-resolutional images.
1027
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1028
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
1029
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1030
+ (especially for steps <= 10). So we recommend to set it to be `True`.
1031
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
1032
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1033
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1034
+ Returns:
1035
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1036
+ """
1037
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1038
+ t_T = self.noise_schedule.T if t_start is None else t_start
1039
+ device = x.device
1040
+ if method == 'adaptive':
1041
+ with torch.no_grad():
1042
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
1043
+ solver_type=solver_type)
1044
+ elif method == 'multistep':
1045
+ assert steps >= order
1046
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1047
+ assert timesteps.shape[0] - 1 == steps
1048
+ with torch.no_grad():
1049
+ vec_t = timesteps[0].expand((x.shape[0]))
1050
+ model_prev_list = [self.model_fn(x, vec_t)]
1051
+ t_prev_list = [vec_t]
1052
+ # Init the first `order` values by lower order multistep DPM-Solver.
1053
+ for init_order in tqdm(range(1, order), desc="DPM init order"):
1054
+ vec_t = timesteps[init_order].expand(x.shape[0])
1055
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
1056
+ solver_type=solver_type)
1057
+ model_prev_list.append(self.model_fn(x, vec_t))
1058
+ t_prev_list.append(vec_t)
1059
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1060
+ for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
1061
+ vec_t = timesteps[step].expand(x.shape[0])
1062
+ if lower_order_final and steps < 15:
1063
+ step_order = min(order, steps + 1 - step)
1064
+ else:
1065
+ step_order = order
1066
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
1067
+ solver_type=solver_type)
1068
+ for i in range(order - 1):
1069
+ t_prev_list[i] = t_prev_list[i + 1]
1070
+ model_prev_list[i] = model_prev_list[i + 1]
1071
+ t_prev_list[-1] = vec_t
1072
+ # We do not need to evaluate the final model value.
1073
+ if step < steps:
1074
+ model_prev_list[-1] = self.model_fn(x, vec_t)
1075
+ elif method in ['singlestep', 'singlestep_fixed']:
1076
+ if method == 'singlestep':
1077
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
1078
+ skip_type=skip_type,
1079
+ t_T=t_T, t_0=t_0,
1080
+ device=device)
1081
+ elif method == 'singlestep_fixed':
1082
+ K = steps // order
1083
+ orders = [order, ] * K
1084
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1085
+ for i, order in enumerate(orders):
1086
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
1087
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
1088
+ N=order, device=device)
1089
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1090
+ vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
1091
+ h = lambda_inner[-1] - lambda_inner[0]
1092
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1093
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1094
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
1095
+ if denoise_to_zero:
1096
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
1097
+ return x
1098
+
1099
+
1100
+ #############################################################
1101
+ # other utility functions
1102
+ #############################################################
1103
+
1104
+ def interpolate_fn(x, xp, yp):
1105
+ """
1106
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1107
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1108
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1109
+ Args:
1110
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1111
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1112
+ yp: PyTorch tensor with shape [C, K].
1113
+ Returns:
1114
+ The function values f(x), with shape [N, C].
1115
+ """
1116
+ N, K = x.shape[0], xp.shape[1]
1117
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1118
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1119
+ x_idx = torch.argmin(x_indices, dim=2)
1120
+ cand_start_idx = x_idx - 1
1121
+ start_idx = torch.where(
1122
+ torch.eq(x_idx, 0),
1123
+ torch.tensor(1, device=x.device),
1124
+ torch.where(
1125
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1126
+ ),
1127
+ )
1128
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1129
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1130
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1131
+ start_idx2 = torch.where(
1132
+ torch.eq(x_idx, 0),
1133
+ torch.tensor(0, device=x.device),
1134
+ torch.where(
1135
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1136
+ ),
1137
+ )
1138
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1139
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1140
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1141
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1142
+ return cand
1143
+
1144
+
1145
+ def expand_dims(v, dims):
1146
+ """
1147
+ Expand the tensor `v` to the dim `dims`.
1148
+ Args:
1149
+ `v`: a PyTorch tensor with shape [N].
1150
+ `dim`: a `int`.
1151
+ Returns:
1152
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1153
+ """
1154
+ return v[(...,) + (None,) * (dims - 1)]
ttts/AA_diffusion_deprecated/ldm/models/diffusion/dpm_solver/sampler.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+ import torch
3
+
4
+ from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
5
+
6
+
7
+ MODEL_TYPES = {
8
+ "eps": "noise",
9
+ "v": "v"
10
+ }
11
+
12
+
13
+ class DPMSolverSampler(object):
14
+ def __init__(self, model, **kwargs):
15
+ super().__init__()
16
+ self.model = model
17
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
18
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
19
+
20
+ def register_buffer(self, name, attr):
21
+ if type(attr) == torch.Tensor:
22
+ if attr.device != torch.device("cuda"):
23
+ attr = attr.to(torch.device("cuda"))
24
+ setattr(self, name, attr)
25
+
26
+ @torch.no_grad()
27
+ def sample(self,
28
+ S,
29
+ batch_size,
30
+ shape,
31
+ conditioning=None,
32
+ callback=None,
33
+ normals_sequence=None,
34
+ img_callback=None,
35
+ quantize_x0=False,
36
+ eta=0.,
37
+ mask=None,
38
+ x0=None,
39
+ temperature=1.,
40
+ noise_dropout=0.,
41
+ score_corrector=None,
42
+ corrector_kwargs=None,
43
+ verbose=True,
44
+ x_T=None,
45
+ log_every_t=100,
46
+ unconditional_guidance_scale=1.,
47
+ unconditional_conditioning=None,
48
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
49
+ **kwargs
50
+ ):
51
+ if conditioning is not None:
52
+ if isinstance(conditioning, dict):
53
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
54
+ if cbs != batch_size:
55
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
56
+ else:
57
+ if conditioning.shape[0] != batch_size:
58
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
59
+
60
+ # sampling
61
+ C, H, W = shape
62
+ size = (batch_size, C, H, W)
63
+
64
+ print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
65
+
66
+ device = self.model.betas.device
67
+ if x_T is None:
68
+ img = torch.randn(size, device=device)
69
+ else:
70
+ img = x_T
71
+
72
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
73
+
74
+ model_fn = model_wrapper(
75
+ lambda x, t, c: self.model.apply_model(x, t, c),
76
+ ns,
77
+ model_type=MODEL_TYPES[self.model.parameterization],
78
+ guidance_type="classifier-free",
79
+ condition=conditioning,
80
+ unconditional_condition=unconditional_conditioning,
81
+ guidance_scale=unconditional_guidance_scale,
82
+ )
83
+
84
+ dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
85
+ x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
86
+
87
+ return x.to(device), None
ttts/AA_diffusion_deprecated/ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+ from ldm.models.diffusion.sampling_util import norm_thresholding
10
+
11
+
12
+ class PLMSSampler(object):
13
+ def __init__(self, model, schedule="linear", **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.ddpm_num_timesteps = model.num_timesteps
17
+ self.schedule = schedule
18
+
19
+ def register_buffer(self, name, attr):
20
+ if type(attr) == torch.Tensor:
21
+ if attr.device != torch.device("cuda"):
22
+ attr = attr.to(torch.device("cuda"))
23
+ setattr(self, name, attr)
24
+
25
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
26
+ if ddim_eta != 0:
27
+ raise ValueError('ddim_eta must be 0 for PLMS')
28
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
+ alphas_cumprod = self.model.alphas_cumprod
31
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
+
34
+ self.register_buffer('betas', to_torch(self.model.betas))
35
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
+
38
+ # calculations for diffusion q(x_t | x_{t-1}) and others
39
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
+
45
+ # ddim sampling parameters
46
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
+ ddim_timesteps=self.ddim_timesteps,
48
+ eta=ddim_eta,verbose=verbose)
49
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
50
+ self.register_buffer('ddim_alphas', ddim_alphas)
51
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
+
58
+ @torch.no_grad()
59
+ def sample(self,
60
+ S,
61
+ batch_size,
62
+ shape,
63
+ conditioning=None,
64
+ callback=None,
65
+ normals_sequence=None,
66
+ img_callback=None,
67
+ quantize_x0=False,
68
+ eta=0.,
69
+ mask=None,
70
+ x0=None,
71
+ temperature=1.,
72
+ noise_dropout=0.,
73
+ score_corrector=None,
74
+ corrector_kwargs=None,
75
+ verbose=True,
76
+ x_T=None,
77
+ log_every_t=100,
78
+ unconditional_guidance_scale=1.,
79
+ unconditional_conditioning=None,
80
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
+ dynamic_threshold=None,
82
+ **kwargs
83
+ ):
84
+ if conditioning is not None:
85
+ if isinstance(conditioning, dict):
86
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
87
+ if cbs != batch_size:
88
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
89
+ else:
90
+ if conditioning.shape[0] != batch_size:
91
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
92
+
93
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
94
+ # sampling
95
+ C, H, W = shape
96
+ size = (batch_size, C, H, W)
97
+ print(f'Data shape for PLMS sampling is {size}')
98
+
99
+ samples, intermediates = self.plms_sampling(conditioning, size,
100
+ callback=callback,
101
+ img_callback=img_callback,
102
+ quantize_denoised=quantize_x0,
103
+ mask=mask, x0=x0,
104
+ ddim_use_original_steps=False,
105
+ noise_dropout=noise_dropout,
106
+ temperature=temperature,
107
+ score_corrector=score_corrector,
108
+ corrector_kwargs=corrector_kwargs,
109
+ x_T=x_T,
110
+ log_every_t=log_every_t,
111
+ unconditional_guidance_scale=unconditional_guidance_scale,
112
+ unconditional_conditioning=unconditional_conditioning,
113
+ dynamic_threshold=dynamic_threshold,
114
+ )
115
+ return samples, intermediates
116
+
117
+ @torch.no_grad()
118
+ def plms_sampling(self, cond, shape,
119
+ x_T=None, ddim_use_original_steps=False,
120
+ callback=None, timesteps=None, quantize_denoised=False,
121
+ mask=None, x0=None, img_callback=None, log_every_t=100,
122
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
123
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
124
+ dynamic_threshold=None):
125
+ device = self.model.betas.device
126
+ b = shape[0]
127
+ if x_T is None:
128
+ img = torch.randn(shape, device=device)
129
+ else:
130
+ img = x_T
131
+
132
+ if timesteps is None:
133
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
134
+ elif timesteps is not None and not ddim_use_original_steps:
135
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
136
+ timesteps = self.ddim_timesteps[:subset_end]
137
+
138
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
139
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
140
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
141
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
142
+
143
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
144
+ old_eps = []
145
+
146
+ for i, step in enumerate(iterator):
147
+ index = total_steps - i - 1
148
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
149
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
150
+
151
+ if mask is not None:
152
+ assert x0 is not None
153
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
154
+ img = img_orig * mask + (1. - mask) * img
155
+
156
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
157
+ quantize_denoised=quantize_denoised, temperature=temperature,
158
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
159
+ corrector_kwargs=corrector_kwargs,
160
+ unconditional_guidance_scale=unconditional_guidance_scale,
161
+ unconditional_conditioning=unconditional_conditioning,
162
+ old_eps=old_eps, t_next=ts_next,
163
+ dynamic_threshold=dynamic_threshold)
164
+ img, pred_x0, e_t = outs
165
+ old_eps.append(e_t)
166
+ if len(old_eps) >= 4:
167
+ old_eps.pop(0)
168
+ if callback: callback(i)
169
+ if img_callback: img_callback(pred_x0, i)
170
+
171
+ if index % log_every_t == 0 or index == total_steps - 1:
172
+ intermediates['x_inter'].append(img)
173
+ intermediates['pred_x0'].append(pred_x0)
174
+
175
+ return img, intermediates
176
+
177
+ @torch.no_grad()
178
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
179
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
180
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
181
+ dynamic_threshold=None):
182
+ b, *_, device = *x.shape, x.device
183
+
184
+ def get_model_output(x, t):
185
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
186
+ e_t = self.model.apply_model(x, t, c)
187
+ else:
188
+ x_in = torch.cat([x] * 2)
189
+ t_in = torch.cat([t] * 2)
190
+ c_in = torch.cat([unconditional_conditioning, c])
191
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
192
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
193
+
194
+ if score_corrector is not None:
195
+ assert self.model.parameterization == "eps"
196
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
197
+
198
+ return e_t
199
+
200
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
201
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
202
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
203
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
204
+
205
+ def get_x_prev_and_pred_x0(e_t, index):
206
+ # select parameters corresponding to the currently considered timestep
207
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
208
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
209
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
210
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
211
+
212
+ # current prediction for x_0
213
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
214
+ if quantize_denoised:
215
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
216
+ if dynamic_threshold is not None:
217
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
218
+ # direction pointing to x_t
219
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
220
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
221
+ if noise_dropout > 0.:
222
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
223
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
224
+ return x_prev, pred_x0
225
+
226
+ e_t = get_model_output(x, t)
227
+ if len(old_eps) == 0:
228
+ # Pseudo Improved Euler (2nd order)
229
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
230
+ e_t_next = get_model_output(x_prev, t_next)
231
+ e_t_prime = (e_t + e_t_next) / 2
232
+ elif len(old_eps) == 1:
233
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
234
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
235
+ elif len(old_eps) == 2:
236
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
237
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
238
+ elif len(old_eps) >= 3:
239
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
240
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
241
+
242
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
243
+
244
+ return x_prev, pred_x0, e_t
ttts/AA_diffusion_deprecated/ldm/models/diffusion/sampling_util.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def append_dims(x, target_dims):
6
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
+ dims_to_append = target_dims - x.ndim
9
+ if dims_to_append < 0:
10
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
+ return x[(...,) + (None,) * dims_to_append]
12
+
13
+
14
+ def norm_thresholding(x0, value):
15
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
16
+ return x0 * (value / s)
17
+
18
+
19
+ def spatial_norm_thresholding(x0, value):
20
+ # b c h w
21
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
22
+ return x0 * (value / s)
ttts/AA_diffusion_deprecated/ldm/modules/attention.py ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+ from typing import Optional, Any
8
+
9
+ from ldm.modules.diffusionmodules.util import checkpoint
10
+
11
+
12
+ try:
13
+ import xformers
14
+ import xformers.ops
15
+ XFORMERS_IS_AVAILBLE = True
16
+ except:
17
+ XFORMERS_IS_AVAILBLE = False
18
+
19
+ # CrossAttn precision handling
20
+ import os
21
+ _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
22
+
23
+ def exists(val):
24
+ return val is not None
25
+
26
+
27
+ def uniq(arr):
28
+ return{el: True for el in arr}.keys()
29
+
30
+
31
+ def default(val, d):
32
+ if exists(val):
33
+ return val
34
+ return d() if isfunction(d) else d
35
+
36
+
37
+ def max_neg_value(t):
38
+ return -torch.finfo(t.dtype).max
39
+
40
+
41
+ def init_(tensor):
42
+ dim = tensor.shape[-1]
43
+ std = 1 / math.sqrt(dim)
44
+ tensor.uniform_(-std, std)
45
+ return tensor
46
+
47
+
48
+ # feedforward
49
+ class GEGLU(nn.Module):
50
+ def __init__(self, dim_in, dim_out):
51
+ super().__init__()
52
+ self.proj = nn.Linear(dim_in, dim_out * 2)
53
+
54
+ def forward(self, x):
55
+ x, gate = self.proj(x).chunk(2, dim=-1)
56
+ return x * F.gelu(gate)
57
+
58
+
59
+ class FeedForward(nn.Module):
60
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
61
+ super().__init__()
62
+ inner_dim = int(dim * mult)
63
+ dim_out = default(dim_out, dim)
64
+ project_in = nn.Sequential(
65
+ nn.Linear(dim, inner_dim),
66
+ nn.GELU()
67
+ ) if not glu else GEGLU(dim, inner_dim)
68
+
69
+ self.net = nn.Sequential(
70
+ project_in,
71
+ nn.Dropout(dropout),
72
+ nn.Linear(inner_dim, dim_out)
73
+ )
74
+
75
+ def forward(self, x):
76
+ return self.net(x)
77
+
78
+
79
+ def zero_module(module):
80
+ """
81
+ Zero out the parameters of a module and return it.
82
+ """
83
+ for p in module.parameters():
84
+ p.detach().zero_()
85
+ return module
86
+
87
+
88
+ def Normalize(in_channels):
89
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
90
+
91
+
92
+ class SpatialSelfAttention(nn.Module):
93
+ def __init__(self, in_channels):
94
+ super().__init__()
95
+ self.in_channels = in_channels
96
+
97
+ self.norm = Normalize(in_channels)
98
+ self.q = torch.nn.Conv2d(in_channels,
99
+ in_channels,
100
+ kernel_size=1,
101
+ stride=1,
102
+ padding=0)
103
+ self.k = torch.nn.Conv2d(in_channels,
104
+ in_channels,
105
+ kernel_size=1,
106
+ stride=1,
107
+ padding=0)
108
+ self.v = torch.nn.Conv2d(in_channels,
109
+ in_channels,
110
+ kernel_size=1,
111
+ stride=1,
112
+ padding=0)
113
+ self.proj_out = torch.nn.Conv2d(in_channels,
114
+ in_channels,
115
+ kernel_size=1,
116
+ stride=1,
117
+ padding=0)
118
+
119
+ def forward(self, x):
120
+ h_ = x
121
+ h_ = self.norm(h_)
122
+ q = self.q(h_)
123
+ k = self.k(h_)
124
+ v = self.v(h_)
125
+
126
+ # compute attention
127
+ b,c,h,w = q.shape
128
+ q = rearrange(q, 'b c h w -> b (h w) c')
129
+ k = rearrange(k, 'b c h w -> b c (h w)')
130
+ w_ = torch.einsum('bij,bjk->bik', q, k)
131
+
132
+ w_ = w_ * (int(c)**(-0.5))
133
+ w_ = torch.nn.functional.softmax(w_, dim=2)
134
+
135
+ # attend to values
136
+ v = rearrange(v, 'b c h w -> b c (h w)')
137
+ w_ = rearrange(w_, 'b i j -> b j i')
138
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
139
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
140
+ h_ = self.proj_out(h_)
141
+
142
+ return x+h_
143
+
144
+
145
+ class CrossAttention(nn.Module):
146
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
147
+ super().__init__()
148
+ inner_dim = dim_head * heads
149
+ context_dim = default(context_dim, query_dim)
150
+
151
+ self.scale = dim_head ** -0.5
152
+ self.heads = heads
153
+
154
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
155
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
156
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
157
+
158
+ self.to_out = nn.Sequential(
159
+ nn.Linear(inner_dim, query_dim),
160
+ nn.Dropout(dropout)
161
+ )
162
+
163
+ def forward(self, x, context=None, mask=None):
164
+ h = self.heads
165
+
166
+ q = self.to_q(x)
167
+ context = default(context, x)
168
+ k = self.to_k(context)
169
+ v = self.to_v(context)
170
+
171
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
172
+
173
+ # force cast to fp32 to avoid overflowing
174
+ if _ATTN_PRECISION =="fp32":
175
+ with torch.autocast(enabled=False, device_type = 'cuda'):
176
+ q, k = q.float(), k.float()
177
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
178
+ else:
179
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
180
+
181
+ del q, k
182
+
183
+ if exists(mask):
184
+ mask = rearrange(mask, 'b ... -> b (...)')
185
+ max_neg_value = -torch.finfo(sim.dtype).max
186
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
187
+ sim.masked_fill_(~mask, max_neg_value)
188
+
189
+ # attention, what we cannot get enough of
190
+ sim = sim.softmax(dim=-1)
191
+
192
+ out = einsum('b i j, b j d -> b i d', sim, v)
193
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
194
+ return self.to_out(out)
195
+
196
+
197
+ class MemoryEfficientCrossAttention(nn.Module):
198
+ # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
199
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
200
+ super().__init__()
201
+ print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
202
+ f"{heads} heads.")
203
+ inner_dim = dim_head * heads
204
+ context_dim = default(context_dim, query_dim)
205
+
206
+ self.heads = heads
207
+ self.dim_head = dim_head
208
+
209
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
210
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
211
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
212
+
213
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
214
+ self.attention_op: Optional[Any] = None
215
+
216
+ def forward(self, x, context=None, mask=None):
217
+ q = self.to_q(x)
218
+ context = default(context, x)
219
+ k = self.to_k(context)
220
+ v = self.to_v(context)
221
+
222
+ b, _, _ = q.shape
223
+ q, k, v = map(
224
+ lambda t: t.unsqueeze(3)
225
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
226
+ .permute(0, 2, 1, 3)
227
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
228
+ .contiguous(),
229
+ (q, k, v),
230
+ )
231
+
232
+ # actually compute the attention, what we cannot get enough of
233
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
234
+
235
+ if exists(mask):
236
+ raise NotImplementedError
237
+ out = (
238
+ out.unsqueeze(0)
239
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
240
+ .permute(0, 2, 1, 3)
241
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
242
+ )
243
+ return self.to_out(out)
244
+
245
+
246
+ class BasicTransformerBlock(nn.Module):
247
+ ATTENTION_MODES = {
248
+ "softmax": CrossAttention, # vanilla attention
249
+ "softmax-xformers": MemoryEfficientCrossAttention
250
+ }
251
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
252
+ disable_self_attn=False):
253
+ super().__init__()
254
+ attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
255
+ assert attn_mode in self.ATTENTION_MODES
256
+ attn_cls = self.ATTENTION_MODES[attn_mode]
257
+ self.disable_self_attn = disable_self_attn
258
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
259
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
260
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
261
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
262
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
263
+ self.norm1 = nn.LayerNorm(dim)
264
+ self.norm2 = nn.LayerNorm(dim)
265
+ self.norm3 = nn.LayerNorm(dim)
266
+ self.checkpoint = checkpoint
267
+
268
+ def forward(self, x, context=None, refer=None):
269
+ if refer is not None:
270
+ return checkpoint(self._forward, (x, context, refer), self.parameters(), self.checkpoint)
271
+ else:
272
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
273
+
274
+ def _forward(self, x, context=None, refer=None):
275
+ flag=0
276
+ if refer==None:
277
+ refer = x
278
+ else:
279
+ x_len = x.shape[1]
280
+ x = torch.cat([x,refer],dim=1)
281
+ flag=1
282
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
283
+ if flag == 1:
284
+ x = x[:,:x_len,:]
285
+ x = self.attn2(self.norm2(x), context=context) + x
286
+ x = self.ff(self.norm3(x)) + x
287
+ if flag==1:
288
+ return x
289
+ else:
290
+ return x, refer
291
+
292
+
293
+ class SpatialTransformer(nn.Module):
294
+ """
295
+ Transformer block for image-like data.
296
+ First, project the input (aka embedding)
297
+ and reshape to b, t, d.
298
+ Then apply standard transformer action.
299
+ Finally, reshape to image
300
+ NEW: use_linear for more efficiency instead of the 1x1 convs
301
+ """
302
+ def __init__(self, in_channels, n_heads, d_head,
303
+ depth=1, dropout=0., context_dim=None,
304
+ disable_self_attn=False, use_linear=False,
305
+ use_checkpoint=True):
306
+ super().__init__()
307
+ if exists(context_dim) and not isinstance(context_dim, list):
308
+ context_dim = [context_dim]
309
+ self.in_channels = in_channels
310
+ inner_dim = n_heads * d_head
311
+ self.norm = Normalize(in_channels)
312
+ if not use_linear:
313
+ self.proj_in = nn.Conv1d(in_channels,
314
+ inner_dim,
315
+ kernel_size=1,
316
+ stride=1,
317
+ padding=0)
318
+ else:
319
+ self.proj_in = nn.Linear(in_channels, inner_dim)
320
+
321
+ self.transformer_blocks = nn.ModuleList(
322
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
323
+ disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
324
+ for d in range(depth)]
325
+ )
326
+ if not use_linear:
327
+ self.proj_out = zero_module(nn.Conv1d(inner_dim,
328
+ in_channels,
329
+ kernel_size=1,
330
+ stride=1,
331
+ padding=0))
332
+ else:
333
+ self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
334
+ self.use_linear = use_linear
335
+
336
+ def forward(self, x, context=None, refer=None):
337
+ # note: if no context is given, cross-attention defaults to self-attention
338
+ if not isinstance(context, list):
339
+ context = [context]
340
+ if refer is not None and not isinstance(refer, list):
341
+ refer = [refer]
342
+ b, c, t = x.shape
343
+ x_in = x
344
+ x = self.norm(x)
345
+ if not self.use_linear:
346
+ x = self.proj_in(x)
347
+ x = rearrange(x, 'b c t -> b t c').contiguous()
348
+ if self.use_linear:
349
+ x = self.proj_in(x)
350
+ for i, block in enumerate(self.transformer_blocks):
351
+ if refer is not None:
352
+ x = block(x, context=context[i], refer=refer[i])
353
+ else:
354
+ x, refer_ret = block(x, context=context[i])
355
+
356
+ if self.use_linear:
357
+ x = self.proj_out(x)
358
+ x = rearrange(x, 'b t c -> b c t', t=t).contiguous()
359
+ if not self.use_linear:
360
+ x = self.proj_out(x)
361
+ if refer is not None:
362
+ return x+x_in
363
+ else:
364
+ return x + x_in, refer_ret
365
+
ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+ from typing import Optional, Any
8
+
9
+ from ldm.modules.attention import MemoryEfficientCrossAttention
10
+
11
+ try:
12
+ import xformers
13
+ import xformers.ops
14
+ XFORMERS_IS_AVAILBLE = True
15
+ except:
16
+ XFORMERS_IS_AVAILBLE = False
17
+ print("No module 'xformers'. Proceeding without it.")
18
+
19
+
20
+ def get_timestep_embedding(timesteps, embedding_dim):
21
+ """
22
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
23
+ From Fairseq.
24
+ Build sinusoidal embeddings.
25
+ This matches the implementation in tensor2tensor, but differs slightly
26
+ from the description in Section 3.5 of "Attention Is All You Need".
27
+ """
28
+ assert len(timesteps.shape) == 1
29
+
30
+ half_dim = embedding_dim // 2
31
+ emb = math.log(10000) / (half_dim - 1)
32
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
33
+ emb = emb.to(device=timesteps.device)
34
+ emb = timesteps.float()[:, None] * emb[None, :]
35
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
36
+ if embedding_dim % 2 == 1: # zero pad
37
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
38
+ return emb
39
+
40
+
41
+ def nonlinearity(x):
42
+ # swish
43
+ return x*torch.sigmoid(x)
44
+
45
+
46
+ def Normalize(in_channels, num_groups=32):
47
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
48
+
49
+
50
+ class Upsample(nn.Module):
51
+ def __init__(self, in_channels, with_conv):
52
+ super().__init__()
53
+ self.with_conv = with_conv
54
+ if self.with_conv:
55
+ self.conv = torch.nn.Conv2d(in_channels,
56
+ in_channels,
57
+ kernel_size=3,
58
+ stride=1,
59
+ padding=1)
60
+
61
+ def forward(self, x):
62
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
63
+ if self.with_conv:
64
+ x = self.conv(x)
65
+ return x
66
+
67
+
68
+ class Downsample(nn.Module):
69
+ def __init__(self, in_channels, with_conv):
70
+ super().__init__()
71
+ self.with_conv = with_conv
72
+ if self.with_conv:
73
+ # no asymmetric padding in torch conv, must do it ourselves
74
+ self.conv = torch.nn.Conv2d(in_channels,
75
+ in_channels,
76
+ kernel_size=3,
77
+ stride=2,
78
+ padding=0)
79
+
80
+ def forward(self, x):
81
+ if self.with_conv:
82
+ pad = (0,1,0,1)
83
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
84
+ x = self.conv(x)
85
+ else:
86
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
87
+ return x
88
+
89
+
90
+ class ResnetBlock(nn.Module):
91
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
92
+ dropout, temb_channels=512):
93
+ super().__init__()
94
+ self.in_channels = in_channels
95
+ out_channels = in_channels if out_channels is None else out_channels
96
+ self.out_channels = out_channels
97
+ self.use_conv_shortcut = conv_shortcut
98
+
99
+ self.norm1 = Normalize(in_channels)
100
+ self.conv1 = torch.nn.Conv2d(in_channels,
101
+ out_channels,
102
+ kernel_size=3,
103
+ stride=1,
104
+ padding=1)
105
+ if temb_channels > 0:
106
+ self.temb_proj = torch.nn.Linear(temb_channels,
107
+ out_channels)
108
+ self.norm2 = Normalize(out_channels)
109
+ self.dropout = torch.nn.Dropout(dropout)
110
+ self.conv2 = torch.nn.Conv2d(out_channels,
111
+ out_channels,
112
+ kernel_size=3,
113
+ stride=1,
114
+ padding=1)
115
+ if self.in_channels != self.out_channels:
116
+ if self.use_conv_shortcut:
117
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
118
+ out_channels,
119
+ kernel_size=3,
120
+ stride=1,
121
+ padding=1)
122
+ else:
123
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
124
+ out_channels,
125
+ kernel_size=1,
126
+ stride=1,
127
+ padding=0)
128
+
129
+ def forward(self, x, temb):
130
+ h = x
131
+ h = self.norm1(h)
132
+ h = nonlinearity(h)
133
+ h = self.conv1(h)
134
+
135
+ if temb is not None:
136
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
137
+
138
+ h = self.norm2(h)
139
+ h = nonlinearity(h)
140
+ h = self.dropout(h)
141
+ h = self.conv2(h)
142
+
143
+ if self.in_channels != self.out_channels:
144
+ if self.use_conv_shortcut:
145
+ x = self.conv_shortcut(x)
146
+ else:
147
+ x = self.nin_shortcut(x)
148
+
149
+ return x+h
150
+
151
+
152
+ class AttnBlock(nn.Module):
153
+ def __init__(self, in_channels):
154
+ super().__init__()
155
+ self.in_channels = in_channels
156
+
157
+ self.norm = Normalize(in_channels)
158
+ self.q = torch.nn.Conv2d(in_channels,
159
+ in_channels,
160
+ kernel_size=1,
161
+ stride=1,
162
+ padding=0)
163
+ self.k = torch.nn.Conv2d(in_channels,
164
+ in_channels,
165
+ kernel_size=1,
166
+ stride=1,
167
+ padding=0)
168
+ self.v = torch.nn.Conv2d(in_channels,
169
+ in_channels,
170
+ kernel_size=1,
171
+ stride=1,
172
+ padding=0)
173
+ self.proj_out = torch.nn.Conv2d(in_channels,
174
+ in_channels,
175
+ kernel_size=1,
176
+ stride=1,
177
+ padding=0)
178
+
179
+ def forward(self, x):
180
+ h_ = x
181
+ h_ = self.norm(h_)
182
+ q = self.q(h_)
183
+ k = self.k(h_)
184
+ v = self.v(h_)
185
+
186
+ # compute attention
187
+ b,c,h,w = q.shape
188
+ q = q.reshape(b,c,h*w)
189
+ q = q.permute(0,2,1) # b,hw,c
190
+ k = k.reshape(b,c,h*w) # b,c,hw
191
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
192
+ w_ = w_ * (int(c)**(-0.5))
193
+ w_ = torch.nn.functional.softmax(w_, dim=2)
194
+
195
+ # attend to values
196
+ v = v.reshape(b,c,h*w)
197
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
198
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
199
+ h_ = h_.reshape(b,c,h,w)
200
+
201
+ h_ = self.proj_out(h_)
202
+
203
+ return x+h_
204
+
205
+ class MemoryEfficientAttnBlock(nn.Module):
206
+ """
207
+ Uses xformers efficient implementation,
208
+ see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
209
+ Note: this is a single-head self-attention operation
210
+ """
211
+ #
212
+ def __init__(self, in_channels):
213
+ super().__init__()
214
+ self.in_channels = in_channels
215
+
216
+ self.norm = Normalize(in_channels)
217
+ self.q = torch.nn.Conv2d(in_channels,
218
+ in_channels,
219
+ kernel_size=1,
220
+ stride=1,
221
+ padding=0)
222
+ self.k = torch.nn.Conv2d(in_channels,
223
+ in_channels,
224
+ kernel_size=1,
225
+ stride=1,
226
+ padding=0)
227
+ self.v = torch.nn.Conv2d(in_channels,
228
+ in_channels,
229
+ kernel_size=1,
230
+ stride=1,
231
+ padding=0)
232
+ self.proj_out = torch.nn.Conv2d(in_channels,
233
+ in_channels,
234
+ kernel_size=1,
235
+ stride=1,
236
+ padding=0)
237
+ self.attention_op: Optional[Any] = None
238
+
239
+ def forward(self, x):
240
+ h_ = x
241
+ h_ = self.norm(h_)
242
+ q = self.q(h_)
243
+ k = self.k(h_)
244
+ v = self.v(h_)
245
+
246
+ # compute attention
247
+ B, C, H, W = q.shape
248
+ q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
249
+
250
+ q, k, v = map(
251
+ lambda t: t.unsqueeze(3)
252
+ .reshape(B, t.shape[1], 1, C)
253
+ .permute(0, 2, 1, 3)
254
+ .reshape(B * 1, t.shape[1], C)
255
+ .contiguous(),
256
+ (q, k, v),
257
+ )
258
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
259
+
260
+ out = (
261
+ out.unsqueeze(0)
262
+ .reshape(B, 1, out.shape[1], C)
263
+ .permute(0, 2, 1, 3)
264
+ .reshape(B, out.shape[1], C)
265
+ )
266
+ out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
267
+ out = self.proj_out(out)
268
+ return x+out
269
+
270
+
271
+ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
272
+ def forward(self, x, context=None, mask=None):
273
+ b, c, h, w = x.shape
274
+ x = rearrange(x, 'b c h w -> b (h w) c')
275
+ out = super().forward(x, context=context, mask=mask)
276
+ out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
277
+ return x + out
278
+
279
+
280
+ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
281
+ assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
282
+ if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
283
+ attn_type = "vanilla-xformers"
284
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
285
+ if attn_type == "vanilla":
286
+ assert attn_kwargs is None
287
+ return AttnBlock(in_channels)
288
+ elif attn_type == "vanilla-xformers":
289
+ print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
290
+ return MemoryEfficientAttnBlock(in_channels)
291
+ elif type == "memory-efficient-cross-attn":
292
+ attn_kwargs["query_dim"] = in_channels
293
+ return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
294
+ elif attn_type == "none":
295
+ return nn.Identity(in_channels)
296
+ else:
297
+ raise NotImplementedError()
298
+
299
+
300
+ class Model(nn.Module):
301
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
302
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
303
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
304
+ super().__init__()
305
+ if use_linear_attn: attn_type = "linear"
306
+ self.ch = ch
307
+ self.temb_ch = self.ch*4
308
+ self.num_resolutions = len(ch_mult)
309
+ self.num_res_blocks = num_res_blocks
310
+ self.resolution = resolution
311
+ self.in_channels = in_channels
312
+
313
+ self.use_timestep = use_timestep
314
+ if self.use_timestep:
315
+ # timestep embedding
316
+ self.temb = nn.Module()
317
+ self.temb.dense = nn.ModuleList([
318
+ torch.nn.Linear(self.ch,
319
+ self.temb_ch),
320
+ torch.nn.Linear(self.temb_ch,
321
+ self.temb_ch),
322
+ ])
323
+
324
+ # downsampling
325
+ self.conv_in = torch.nn.Conv2d(in_channels,
326
+ self.ch,
327
+ kernel_size=3,
328
+ stride=1,
329
+ padding=1)
330
+
331
+ curr_res = resolution
332
+ in_ch_mult = (1,)+tuple(ch_mult)
333
+ self.down = nn.ModuleList()
334
+ for i_level in range(self.num_resolutions):
335
+ block = nn.ModuleList()
336
+ attn = nn.ModuleList()
337
+ block_in = ch*in_ch_mult[i_level]
338
+ block_out = ch*ch_mult[i_level]
339
+ for i_block in range(self.num_res_blocks):
340
+ block.append(ResnetBlock(in_channels=block_in,
341
+ out_channels=block_out,
342
+ temb_channels=self.temb_ch,
343
+ dropout=dropout))
344
+ block_in = block_out
345
+ if curr_res in attn_resolutions:
346
+ attn.append(make_attn(block_in, attn_type=attn_type))
347
+ down = nn.Module()
348
+ down.block = block
349
+ down.attn = attn
350
+ if i_level != self.num_resolutions-1:
351
+ down.downsample = Downsample(block_in, resamp_with_conv)
352
+ curr_res = curr_res // 2
353
+ self.down.append(down)
354
+
355
+ # middle
356
+ self.mid = nn.Module()
357
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
358
+ out_channels=block_in,
359
+ temb_channels=self.temb_ch,
360
+ dropout=dropout)
361
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
362
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
363
+ out_channels=block_in,
364
+ temb_channels=self.temb_ch,
365
+ dropout=dropout)
366
+
367
+ # upsampling
368
+ self.up = nn.ModuleList()
369
+ for i_level in reversed(range(self.num_resolutions)):
370
+ block = nn.ModuleList()
371
+ attn = nn.ModuleList()
372
+ block_out = ch*ch_mult[i_level]
373
+ skip_in = ch*ch_mult[i_level]
374
+ for i_block in range(self.num_res_blocks+1):
375
+ if i_block == self.num_res_blocks:
376
+ skip_in = ch*in_ch_mult[i_level]
377
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
378
+ out_channels=block_out,
379
+ temb_channels=self.temb_ch,
380
+ dropout=dropout))
381
+ block_in = block_out
382
+ if curr_res in attn_resolutions:
383
+ attn.append(make_attn(block_in, attn_type=attn_type))
384
+ up = nn.Module()
385
+ up.block = block
386
+ up.attn = attn
387
+ if i_level != 0:
388
+ up.upsample = Upsample(block_in, resamp_with_conv)
389
+ curr_res = curr_res * 2
390
+ self.up.insert(0, up) # prepend to get consistent order
391
+
392
+ # end
393
+ self.norm_out = Normalize(block_in)
394
+ self.conv_out = torch.nn.Conv2d(block_in,
395
+ out_ch,
396
+ kernel_size=3,
397
+ stride=1,
398
+ padding=1)
399
+
400
+ def forward(self, x, t=None, context=None):
401
+ #assert x.shape[2] == x.shape[3] == self.resolution
402
+ if context is not None:
403
+ # assume aligned context, cat along channel axis
404
+ x = torch.cat((x, context), dim=1)
405
+ if self.use_timestep:
406
+ # timestep embedding
407
+ assert t is not None
408
+ temb = get_timestep_embedding(t, self.ch)
409
+ temb = self.temb.dense[0](temb)
410
+ temb = nonlinearity(temb)
411
+ temb = self.temb.dense[1](temb)
412
+ else:
413
+ temb = None
414
+
415
+ # downsampling
416
+ hs = [self.conv_in(x)]
417
+ for i_level in range(self.num_resolutions):
418
+ for i_block in range(self.num_res_blocks):
419
+ h = self.down[i_level].block[i_block](hs[-1], temb)
420
+ if len(self.down[i_level].attn) > 0:
421
+ h = self.down[i_level].attn[i_block](h)
422
+ hs.append(h)
423
+ if i_level != self.num_resolutions-1:
424
+ hs.append(self.down[i_level].downsample(hs[-1]))
425
+
426
+ # middle
427
+ h = hs[-1]
428
+ h = self.mid.block_1(h, temb)
429
+ h = self.mid.attn_1(h)
430
+ h = self.mid.block_2(h, temb)
431
+
432
+ # upsampling
433
+ for i_level in reversed(range(self.num_resolutions)):
434
+ for i_block in range(self.num_res_blocks+1):
435
+ h = self.up[i_level].block[i_block](
436
+ torch.cat([h, hs.pop()], dim=1), temb)
437
+ if len(self.up[i_level].attn) > 0:
438
+ h = self.up[i_level].attn[i_block](h)
439
+ if i_level != 0:
440
+ h = self.up[i_level].upsample(h)
441
+
442
+ # end
443
+ h = self.norm_out(h)
444
+ h = nonlinearity(h)
445
+ h = self.conv_out(h)
446
+ return h
447
+
448
+ def get_last_layer(self):
449
+ return self.conv_out.weight
450
+
451
+
452
+ class Encoder(nn.Module):
453
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
454
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
455
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
456
+ **ignore_kwargs):
457
+ super().__init__()
458
+ if use_linear_attn: attn_type = "linear"
459
+ self.ch = ch
460
+ self.temb_ch = 0
461
+ self.num_resolutions = len(ch_mult)
462
+ self.num_res_blocks = num_res_blocks
463
+ self.resolution = resolution
464
+ self.in_channels = in_channels
465
+
466
+ # downsampling
467
+ self.conv_in = torch.nn.Conv2d(in_channels,
468
+ self.ch,
469
+ kernel_size=3,
470
+ stride=1,
471
+ padding=1)
472
+
473
+ curr_res = resolution
474
+ in_ch_mult = (1,)+tuple(ch_mult)
475
+ self.in_ch_mult = in_ch_mult
476
+ self.down = nn.ModuleList()
477
+ for i_level in range(self.num_resolutions):
478
+ block = nn.ModuleList()
479
+ attn = nn.ModuleList()
480
+ block_in = ch*in_ch_mult[i_level]
481
+ block_out = ch*ch_mult[i_level]
482
+ for i_block in range(self.num_res_blocks):
483
+ block.append(ResnetBlock(in_channels=block_in,
484
+ out_channels=block_out,
485
+ temb_channels=self.temb_ch,
486
+ dropout=dropout))
487
+ block_in = block_out
488
+ if curr_res in attn_resolutions:
489
+ attn.append(make_attn(block_in, attn_type=attn_type))
490
+ down = nn.Module()
491
+ down.block = block
492
+ down.attn = attn
493
+ if i_level != self.num_resolutions-1:
494
+ down.downsample = Downsample(block_in, resamp_with_conv)
495
+ curr_res = curr_res // 2
496
+ self.down.append(down)
497
+
498
+ # middle
499
+ self.mid = nn.Module()
500
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
505
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
506
+ out_channels=block_in,
507
+ temb_channels=self.temb_ch,
508
+ dropout=dropout)
509
+
510
+ # end
511
+ self.norm_out = Normalize(block_in)
512
+ self.conv_out = torch.nn.Conv2d(block_in,
513
+ 2*z_channels if double_z else z_channels,
514
+ kernel_size=3,
515
+ stride=1,
516
+ padding=1)
517
+
518
+ def forward(self, x):
519
+ # timestep embedding
520
+ temb = None
521
+
522
+ # downsampling
523
+ hs = [self.conv_in(x)]
524
+ for i_level in range(self.num_resolutions):
525
+ for i_block in range(self.num_res_blocks):
526
+ h = self.down[i_level].block[i_block](hs[-1], temb)
527
+ if len(self.down[i_level].attn) > 0:
528
+ h = self.down[i_level].attn[i_block](h)
529
+ hs.append(h)
530
+ if i_level != self.num_resolutions-1:
531
+ hs.append(self.down[i_level].downsample(hs[-1]))
532
+
533
+ # middle
534
+ h = hs[-1]
535
+ h = self.mid.block_1(h, temb)
536
+ h = self.mid.attn_1(h)
537
+ h = self.mid.block_2(h, temb)
538
+
539
+ # end
540
+ h = self.norm_out(h)
541
+ h = nonlinearity(h)
542
+ h = self.conv_out(h)
543
+ return h
544
+
545
+
546
+ class Decoder(nn.Module):
547
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
548
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
549
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
550
+ attn_type="vanilla", **ignorekwargs):
551
+ super().__init__()
552
+ if use_linear_attn: attn_type = "linear"
553
+ self.ch = ch
554
+ self.temb_ch = 0
555
+ self.num_resolutions = len(ch_mult)
556
+ self.num_res_blocks = num_res_blocks
557
+ self.resolution = resolution
558
+ self.in_channels = in_channels
559
+ self.give_pre_end = give_pre_end
560
+ self.tanh_out = tanh_out
561
+
562
+ # compute in_ch_mult, block_in and curr_res at lowest res
563
+ in_ch_mult = (1,)+tuple(ch_mult)
564
+ block_in = ch*ch_mult[self.num_resolutions-1]
565
+ curr_res = resolution // 2**(self.num_resolutions-1)
566
+ self.z_shape = (1,z_channels,curr_res,curr_res)
567
+ print("Working with z of shape {} = {} dimensions.".format(
568
+ self.z_shape, np.prod(self.z_shape)))
569
+
570
+ # z to block_in
571
+ self.conv_in = torch.nn.Conv2d(z_channels,
572
+ block_in,
573
+ kernel_size=3,
574
+ stride=1,
575
+ padding=1)
576
+
577
+ # middle
578
+ self.mid = nn.Module()
579
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
580
+ out_channels=block_in,
581
+ temb_channels=self.temb_ch,
582
+ dropout=dropout)
583
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
584
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
585
+ out_channels=block_in,
586
+ temb_channels=self.temb_ch,
587
+ dropout=dropout)
588
+
589
+ # upsampling
590
+ self.up = nn.ModuleList()
591
+ for i_level in reversed(range(self.num_resolutions)):
592
+ block = nn.ModuleList()
593
+ attn = nn.ModuleList()
594
+ block_out = ch*ch_mult[i_level]
595
+ for i_block in range(self.num_res_blocks+1):
596
+ block.append(ResnetBlock(in_channels=block_in,
597
+ out_channels=block_out,
598
+ temb_channels=self.temb_ch,
599
+ dropout=dropout))
600
+ block_in = block_out
601
+ if curr_res in attn_resolutions:
602
+ attn.append(make_attn(block_in, attn_type=attn_type))
603
+ up = nn.Module()
604
+ up.block = block
605
+ up.attn = attn
606
+ if i_level != 0:
607
+ up.upsample = Upsample(block_in, resamp_with_conv)
608
+ curr_res = curr_res * 2
609
+ self.up.insert(0, up) # prepend to get consistent order
610
+
611
+ # end
612
+ self.norm_out = Normalize(block_in)
613
+ self.conv_out = torch.nn.Conv2d(block_in,
614
+ out_ch,
615
+ kernel_size=3,
616
+ stride=1,
617
+ padding=1)
618
+
619
+ def forward(self, z):
620
+ #assert z.shape[1:] == self.z_shape[1:]
621
+ self.last_z_shape = z.shape
622
+
623
+ # timestep embedding
624
+ temb = None
625
+
626
+ # z to block_in
627
+ h = self.conv_in(z)
628
+
629
+ # middle
630
+ h = self.mid.block_1(h, temb)
631
+ h = self.mid.attn_1(h)
632
+ h = self.mid.block_2(h, temb)
633
+
634
+ # upsampling
635
+ for i_level in reversed(range(self.num_resolutions)):
636
+ for i_block in range(self.num_res_blocks+1):
637
+ h = self.up[i_level].block[i_block](h, temb)
638
+ if len(self.up[i_level].attn) > 0:
639
+ h = self.up[i_level].attn[i_block](h)
640
+ if i_level != 0:
641
+ h = self.up[i_level].upsample(h)
642
+
643
+ # end
644
+ if self.give_pre_end:
645
+ return h
646
+
647
+ h = self.norm_out(h)
648
+ h = nonlinearity(h)
649
+ h = self.conv_out(h)
650
+ if self.tanh_out:
651
+ h = torch.tanh(h)
652
+ return h
653
+
654
+
655
+ class SimpleDecoder(nn.Module):
656
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
657
+ super().__init__()
658
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
659
+ ResnetBlock(in_channels=in_channels,
660
+ out_channels=2 * in_channels,
661
+ temb_channels=0, dropout=0.0),
662
+ ResnetBlock(in_channels=2 * in_channels,
663
+ out_channels=4 * in_channels,
664
+ temb_channels=0, dropout=0.0),
665
+ ResnetBlock(in_channels=4 * in_channels,
666
+ out_channels=2 * in_channels,
667
+ temb_channels=0, dropout=0.0),
668
+ nn.Conv2d(2*in_channels, in_channels, 1),
669
+ Upsample(in_channels, with_conv=True)])
670
+ # end
671
+ self.norm_out = Normalize(in_channels)
672
+ self.conv_out = torch.nn.Conv2d(in_channels,
673
+ out_channels,
674
+ kernel_size=3,
675
+ stride=1,
676
+ padding=1)
677
+
678
+ def forward(self, x):
679
+ for i, layer in enumerate(self.model):
680
+ if i in [1,2,3]:
681
+ x = layer(x, None)
682
+ else:
683
+ x = layer(x)
684
+
685
+ h = self.norm_out(x)
686
+ h = nonlinearity(h)
687
+ x = self.conv_out(h)
688
+ return x
689
+
690
+
691
+ class UpsampleDecoder(nn.Module):
692
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
693
+ ch_mult=(2,2), dropout=0.0):
694
+ super().__init__()
695
+ # upsampling
696
+ self.temb_ch = 0
697
+ self.num_resolutions = len(ch_mult)
698
+ self.num_res_blocks = num_res_blocks
699
+ block_in = in_channels
700
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
701
+ self.res_blocks = nn.ModuleList()
702
+ self.upsample_blocks = nn.ModuleList()
703
+ for i_level in range(self.num_resolutions):
704
+ res_block = []
705
+ block_out = ch * ch_mult[i_level]
706
+ for i_block in range(self.num_res_blocks + 1):
707
+ res_block.append(ResnetBlock(in_channels=block_in,
708
+ out_channels=block_out,
709
+ temb_channels=self.temb_ch,
710
+ dropout=dropout))
711
+ block_in = block_out
712
+ self.res_blocks.append(nn.ModuleList(res_block))
713
+ if i_level != self.num_resolutions - 1:
714
+ self.upsample_blocks.append(Upsample(block_in, True))
715
+ curr_res = curr_res * 2
716
+
717
+ # end
718
+ self.norm_out = Normalize(block_in)
719
+ self.conv_out = torch.nn.Conv2d(block_in,
720
+ out_channels,
721
+ kernel_size=3,
722
+ stride=1,
723
+ padding=1)
724
+
725
+ def forward(self, x):
726
+ # upsampling
727
+ h = x
728
+ for k, i_level in enumerate(range(self.num_resolutions)):
729
+ for i_block in range(self.num_res_blocks + 1):
730
+ h = self.res_blocks[i_level][i_block](h, None)
731
+ if i_level != self.num_resolutions - 1:
732
+ h = self.upsample_blocks[k](h)
733
+ h = self.norm_out(h)
734
+ h = nonlinearity(h)
735
+ h = self.conv_out(h)
736
+ return h
737
+
738
+
739
+ class LatentRescaler(nn.Module):
740
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
741
+ super().__init__()
742
+ # residual block, interpolate, residual block
743
+ self.factor = factor
744
+ self.conv_in = nn.Conv2d(in_channels,
745
+ mid_channels,
746
+ kernel_size=3,
747
+ stride=1,
748
+ padding=1)
749
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
750
+ out_channels=mid_channels,
751
+ temb_channels=0,
752
+ dropout=0.0) for _ in range(depth)])
753
+ self.attn = AttnBlock(mid_channels)
754
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
755
+ out_channels=mid_channels,
756
+ temb_channels=0,
757
+ dropout=0.0) for _ in range(depth)])
758
+
759
+ self.conv_out = nn.Conv2d(mid_channels,
760
+ out_channels,
761
+ kernel_size=1,
762
+ )
763
+
764
+ def forward(self, x):
765
+ x = self.conv_in(x)
766
+ for block in self.res_block1:
767
+ x = block(x, None)
768
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
769
+ x = self.attn(x)
770
+ for block in self.res_block2:
771
+ x = block(x, None)
772
+ x = self.conv_out(x)
773
+ return x
774
+
775
+
776
+ class MergedRescaleEncoder(nn.Module):
777
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
778
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
779
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
780
+ super().__init__()
781
+ intermediate_chn = ch * ch_mult[-1]
782
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
783
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
784
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
785
+ out_ch=None)
786
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
787
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
788
+
789
+ def forward(self, x):
790
+ x = self.encoder(x)
791
+ x = self.rescaler(x)
792
+ return x
793
+
794
+
795
+ class MergedRescaleDecoder(nn.Module):
796
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
797
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
798
+ super().__init__()
799
+ tmp_chn = z_channels*ch_mult[-1]
800
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
801
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
802
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
803
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
804
+ out_channels=tmp_chn, depth=rescale_module_depth)
805
+
806
+ def forward(self, x):
807
+ x = self.rescaler(x)
808
+ x = self.decoder(x)
809
+ return x
810
+
811
+
812
+ class Upsampler(nn.Module):
813
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
814
+ super().__init__()
815
+ assert out_size >= in_size
816
+ num_blocks = int(np.log2(out_size//in_size))+1
817
+ factor_up = 1.+ (out_size % in_size)
818
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
819
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
820
+ out_channels=in_channels)
821
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
822
+ attn_resolutions=[], in_channels=None, ch=in_channels,
823
+ ch_mult=[ch_mult for _ in range(num_blocks)])
824
+
825
+ def forward(self, x):
826
+ x = self.rescaler(x)
827
+ x = self.decoder(x)
828
+ return x
829
+
830
+
831
+ class Resize(nn.Module):
832
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
833
+ super().__init__()
834
+ self.with_conv = learned
835
+ self.mode = mode
836
+ if self.with_conv:
837
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
838
+ raise NotImplementedError()
839
+ assert in_channels is not None
840
+ # no asymmetric padding in torch conv, must do it ourselves
841
+ self.conv = torch.nn.Conv2d(in_channels,
842
+ in_channels,
843
+ kernel_size=4,
844
+ stride=2,
845
+ padding=1)
846
+
847
+ def forward(self, x, scale_factor=1.0):
848
+ if scale_factor==1.0:
849
+ return x
850
+ else:
851
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
852
+ return x
ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,796 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ import math
3
+
4
+ import numpy as np
5
+ import torch as th
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+
9
+ from ldm.modules.diffusionmodules.util import (
10
+ checkpoint,
11
+ conv_nd,
12
+ linear,
13
+ avg_pool_nd,
14
+ zero_module,
15
+ normalization,
16
+ timestep_embedding,
17
+ )
18
+ from ldm.modules.attention import SpatialTransformer
19
+ from ldm.util import exists
20
+
21
+
22
+ # dummy replace
23
+ def convert_module_to_f16(x):
24
+ pass
25
+
26
+ def convert_module_to_f32(x):
27
+ pass
28
+
29
+
30
+ ## go
31
+ class AttentionPool2d(nn.Module):
32
+ """
33
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
34
+ """
35
+
36
+ def __init__(
37
+ self,
38
+ spacial_dim: int,
39
+ embed_dim: int,
40
+ num_heads_channels: int,
41
+ output_dim: int = None,
42
+ ):
43
+ super().__init__()
44
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
45
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
46
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
47
+ self.num_heads = embed_dim // num_heads_channels
48
+ self.attention = QKVAttention(self.num_heads)
49
+
50
+ def forward(self, x):
51
+ b, c, *_spatial = x.shape
52
+ x = x.reshape(b, c, -1) # NC(HW)
53
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
54
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
55
+ x = self.qkv_proj(x)
56
+ x = self.attention(x)
57
+ x = self.c_proj(x)
58
+ return x[:, :, 0]
59
+
60
+
61
+ class TimestepBlock(nn.Module):
62
+ """
63
+ Any module where forward() takes timestep embeddings as a second argument.
64
+ """
65
+
66
+ @abstractmethod
67
+ def forward(self, x, emb):
68
+ """
69
+ Apply the module to `x` given `emb` timestep embeddings.
70
+ """
71
+
72
+
73
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
74
+ """
75
+ A sequential module that passes timestep embeddings to the children that
76
+ support it as an extra input.
77
+ """
78
+
79
+ def forward(self, x, emb=None, context=None, refers=None, return_refer=False):
80
+ refer_ret = []
81
+ i = 0
82
+ for layer in self:
83
+ if isinstance(layer, TimestepBlock):
84
+ x = layer(x, emb)
85
+ elif isinstance(layer, SpatialTransformer):
86
+ if refers==None:
87
+ x, refer = layer(x, context)
88
+ refer_ret.append(refer)
89
+ else:
90
+ x = layer(x, context, refers[i])
91
+ i+=1
92
+ else:
93
+ x = layer(x)
94
+ if return_refer==True:
95
+ return x, refer_ret
96
+ else:
97
+ return x
98
+
99
+
100
+ class Upsample(nn.Module):
101
+ """
102
+ An upsampling layer with an optional convolution.
103
+ :param channels: channels in the inputs and outputs.
104
+ :param use_conv: a bool determining if a convolution is applied.
105
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
106
+ upsampling occurs in the inner-two dimensions.
107
+ """
108
+
109
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
110
+ super().__init__()
111
+ self.channels = channels
112
+ self.out_channels = out_channels or channels
113
+ self.use_conv = use_conv
114
+ self.dims = dims
115
+ if use_conv:
116
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
117
+
118
+ def forward(self, x):
119
+ assert x.shape[1] == self.channels
120
+ if self.dims == 3:
121
+ x = F.interpolate(
122
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
123
+ )
124
+ else:
125
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
126
+ if self.use_conv:
127
+ x = self.conv(x)
128
+ return x
129
+
130
+ class TransposedUpsample(nn.Module):
131
+ 'Learned 2x upsampling without padding'
132
+ def __init__(self, channels, out_channels=None, ks=5):
133
+ super().__init__()
134
+ self.channels = channels
135
+ self.out_channels = out_channels or channels
136
+
137
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
138
+
139
+ def forward(self,x):
140
+ return self.up(x)
141
+
142
+
143
+ class Downsample(nn.Module):
144
+ """
145
+ A downsampling layer with an optional convolution.
146
+ :param channels: channels in the inputs and outputs.
147
+ :param use_conv: a bool determining if a convolution is applied.
148
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
149
+ downsampling occurs in the inner-two dimensions.
150
+ """
151
+
152
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
153
+ super().__init__()
154
+ self.channels = channels
155
+ self.out_channels = out_channels or channels
156
+ self.use_conv = use_conv
157
+ self.dims = dims
158
+ stride = 2 if dims != 3 else (1, 2, 2)
159
+ if use_conv:
160
+ self.op = conv_nd(
161
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
162
+ )
163
+ else:
164
+ assert self.channels == self.out_channels
165
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
166
+
167
+ def forward(self, x):
168
+ assert x.shape[1] == self.channels
169
+ return self.op(x)
170
+
171
+
172
+ class ResBlock(TimestepBlock):
173
+ """
174
+ A residual block that can optionally change the number of channels.
175
+ :param channels: the number of input channels.
176
+ :param emb_channels: the number of timestep embedding channels.
177
+ :param dropout: the rate of dropout.
178
+ :param out_channels: if specified, the number of out channels.
179
+ :param use_conv: if True and out_channels is specified, use a spatial
180
+ convolution instead of a smaller 1x1 convolution to change the
181
+ channels in the skip connection.
182
+ :param dims: determines if the signal is 1D, 2D, or 3D.
183
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
184
+ :param up: if True, use this block for upsampling.
185
+ :param down: if True, use this block for downsampling.
186
+ """
187
+
188
+ def __init__(
189
+ self,
190
+ channels,
191
+ emb_channels,
192
+ dropout,
193
+ out_channels=None,
194
+ use_conv=False,
195
+ use_scale_shift_norm=False,
196
+ dims=2,
197
+ use_checkpoint=False,
198
+ up=False,
199
+ down=False,
200
+ ):
201
+ super().__init__()
202
+ self.channels = channels
203
+ self.emb_channels = emb_channels
204
+ self.dropout = dropout
205
+ self.out_channels = out_channels or channels
206
+ self.use_conv = use_conv
207
+ self.use_checkpoint = use_checkpoint
208
+ self.use_scale_shift_norm = use_scale_shift_norm
209
+
210
+ self.in_layers = nn.Sequential(
211
+ normalization(channels),
212
+ nn.SiLU(),
213
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
214
+ )
215
+
216
+ self.updown = up or down
217
+
218
+ if up:
219
+ self.h_upd = Upsample(channels, False, dims)
220
+ self.x_upd = Upsample(channels, False, dims)
221
+ elif down:
222
+ self.h_upd = Downsample(channels, False, dims)
223
+ self.x_upd = Downsample(channels, False, dims)
224
+ else:
225
+ self.h_upd = self.x_upd = nn.Identity()
226
+
227
+ self.emb_layers = nn.Sequential(
228
+ nn.SiLU(),
229
+ linear(
230
+ emb_channels,
231
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
232
+ ),
233
+ )
234
+ self.out_layers = nn.Sequential(
235
+ normalization(self.out_channels),
236
+ nn.SiLU(),
237
+ nn.Dropout(p=dropout),
238
+ zero_module(
239
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
240
+ ),
241
+ )
242
+
243
+ if self.out_channels == channels:
244
+ self.skip_connection = nn.Identity()
245
+ elif use_conv:
246
+ self.skip_connection = conv_nd(
247
+ dims, channels, self.out_channels, 3, padding=1
248
+ )
249
+ else:
250
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
251
+
252
+ def forward(self, x, emb):
253
+ """
254
+ Apply the block to a Tensor, conditioned on a timestep embedding.
255
+ :param x: an [N x C x ...] Tensor of features.
256
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
257
+ :return: an [N x C x ...] Tensor of outputs.
258
+ """
259
+ return checkpoint(
260
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
261
+ )
262
+
263
+
264
+ def _forward(self, x, emb):
265
+ if self.updown:
266
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
267
+ h = in_rest(x)
268
+ h = self.h_upd(h)
269
+ x = self.x_upd(x)
270
+ h = in_conv(h)
271
+ else:
272
+ h = self.in_layers(x)
273
+ emb_out = self.emb_layers(emb).type(h.dtype)
274
+ while len(emb_out.shape) < len(h.shape):
275
+ emb_out = emb_out[..., None]
276
+ if self.use_scale_shift_norm:
277
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
278
+ scale, shift = th.chunk(emb_out, 2, dim=1)
279
+ h = out_norm(h) * (1 + scale) + shift
280
+ h = out_rest(h)
281
+ else:
282
+ h = h + emb_out
283
+ h = self.out_layers(h)
284
+ return self.skip_connection(x) + h
285
+
286
+
287
+ class AttentionBlock(nn.Module):
288
+ """
289
+ An attention block that allows spatial positions to attend to each other.
290
+ Originally ported from here, but adapted to the N-d case.
291
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
292
+ """
293
+
294
+ def __init__(
295
+ self,
296
+ channels,
297
+ num_heads=1,
298
+ num_head_channels=-1,
299
+ use_checkpoint=False,
300
+ use_new_attention_order=False,
301
+ ):
302
+ super().__init__()
303
+ self.channels = channels
304
+ if num_head_channels == -1:
305
+ self.num_heads = num_heads
306
+ else:
307
+ assert (
308
+ channels % num_head_channels == 0
309
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
310
+ self.num_heads = channels // num_head_channels
311
+ self.use_checkpoint = use_checkpoint
312
+ self.norm = normalization(channels)
313
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
314
+ if use_new_attention_order:
315
+ # split qkv before split heads
316
+ self.attention = QKVAttention(self.num_heads)
317
+ else:
318
+ # split heads before split qkv
319
+ self.attention = QKVAttentionLegacy(self.num_heads)
320
+
321
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
322
+
323
+ def forward(self, x):
324
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
325
+ #return pt_checkpoint(self._forward, x) # pytorch
326
+
327
+ def _forward(self, x):
328
+ b, c, *spatial = x.shape
329
+ x = x.reshape(b, c, -1)
330
+ qkv = self.qkv(self.norm(x))
331
+ h = self.attention(qkv)
332
+ h = self.proj_out(h)
333
+ return (x + h).reshape(b, c, *spatial)
334
+
335
+
336
+ def count_flops_attn(model, _x, y):
337
+ """
338
+ A counter for the `thop` package to count the operations in an
339
+ attention operation.
340
+ Meant to be used like:
341
+ macs, params = thop.profile(
342
+ model,
343
+ inputs=(inputs, timestamps),
344
+ custom_ops={QKVAttention: QKVAttention.count_flops},
345
+ )
346
+ """
347
+ b, c, *spatial = y[0].shape
348
+ num_spatial = int(np.prod(spatial))
349
+ # We perform two matmuls with the same number of ops.
350
+ # The first computes the weight matrix, the second computes
351
+ # the combination of the value vectors.
352
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
353
+ model.total_ops += th.DoubleTensor([matmul_ops])
354
+
355
+
356
+ class QKVAttentionLegacy(nn.Module):
357
+ """
358
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
359
+ """
360
+
361
+ def __init__(self, n_heads):
362
+ super().__init__()
363
+ self.n_heads = n_heads
364
+
365
+ def forward(self, qkv):
366
+ """
367
+ Apply QKV attention.
368
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
369
+ :return: an [N x (H * C) x T] tensor after attention.
370
+ """
371
+ bs, width, length = qkv.shape
372
+ assert width % (3 * self.n_heads) == 0
373
+ ch = width // (3 * self.n_heads)
374
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
375
+ scale = 1 / math.sqrt(math.sqrt(ch))
376
+ weight = th.einsum(
377
+ "bct,bcs->bts", q * scale, k * scale
378
+ ) # More stable with f16 than dividing afterwards
379
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
380
+ a = th.einsum("bts,bcs->bct", weight, v)
381
+ return a.reshape(bs, -1, length)
382
+
383
+ @staticmethod
384
+ def count_flops(model, _x, y):
385
+ return count_flops_attn(model, _x, y)
386
+
387
+
388
+ class QKVAttention(nn.Module):
389
+ """
390
+ A module which performs QKV attention and splits in a different order.
391
+ """
392
+
393
+ def __init__(self, n_heads):
394
+ super().__init__()
395
+ self.n_heads = n_heads
396
+
397
+ def forward(self, qkv):
398
+ """
399
+ Apply QKV attention.
400
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
401
+ :return: an [N x (H * C) x T] tensor after attention.
402
+ """
403
+ bs, width, length = qkv.shape
404
+ assert width % (3 * self.n_heads) == 0
405
+ ch = width // (3 * self.n_heads)
406
+ q, k, v = qkv.chunk(3, dim=1)
407
+ scale = 1 / math.sqrt(math.sqrt(ch))
408
+ weight = th.einsum(
409
+ "bct,bcs->bts",
410
+ (q * scale).view(bs * self.n_heads, ch, length),
411
+ (k * scale).view(bs * self.n_heads, ch, length),
412
+ ) # More stable with f16 than dividing afterwards
413
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
414
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
415
+ return a.reshape(bs, -1, length)
416
+
417
+ @staticmethod
418
+ def count_flops(model, _x, y):
419
+ return count_flops_attn(model, _x, y)
420
+
421
+
422
+ class UNetModel(nn.Module):
423
+ """
424
+ The full UNet model with attention and timestep embedding.
425
+ :param in_channels: channels in the input Tensor.
426
+ :param model_channels: base channel count for the model.
427
+ :param out_channels: channels in the output Tensor.
428
+ :param num_res_blocks: number of residual blocks per downsample.
429
+ :param attention_resolutions: a collection of downsample rates at which
430
+ attention will take place. May be a set, list, or tuple.
431
+ For example, if this contains 4, then at 4x downsampling, attention
432
+ will be used.
433
+ :param dropout: the dropout probability.
434
+ :param channel_mult: channel multiplier for each level of the UNet.
435
+ :param conv_resample: if True, use learned convolutions for upsampling and
436
+ downsampling.
437
+ :param dims: determines if the signal is 1D, 2D, or 3D.
438
+ :param num_classes: if specified (as an int), then this model will be
439
+ class-conditional with `num_classes` classes.
440
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
441
+ :param num_heads: the number of attention heads in each attention layer.
442
+ :param num_heads_channels: if specified, ignore num_heads and instead use
443
+ a fixed channel width per attention head.
444
+ :param num_heads_upsample: works with num_heads to set a different number
445
+ of heads for upsampling. Deprecated.
446
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
447
+ :param resblock_updown: use residual blocks for up/downsampling.
448
+ :param use_new_attention_order: use a different attention pattern for potentially
449
+ increased efficiency.
450
+ """
451
+
452
+ def __init__(
453
+ self,
454
+ image_size,
455
+ in_channels,
456
+ model_channels,
457
+ out_channels,
458
+ num_res_blocks,
459
+ attention_resolutions,
460
+ dropout=0,
461
+ channel_mult=(1, 2, 4, 8),
462
+ conv_resample=True,
463
+ dims=1,
464
+ num_classes=None,
465
+ use_checkpoint=False,
466
+ use_fp16=False,
467
+ num_heads=-1,
468
+ num_head_channels=-1,
469
+ num_heads_upsample=-1,
470
+ use_scale_shift_norm=False,
471
+ resblock_updown=False,
472
+ use_new_attention_order=False,
473
+ use_spatial_transformer=False, # custom transformer support
474
+ transformer_depth=1, # custom transformer support
475
+ context_dim=None, # custom transformer support
476
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
477
+ legacy=True,
478
+ disable_self_attentions=None,
479
+ num_attention_blocks=None,
480
+ disable_middle_self_attn=False,
481
+ use_linear_in_transformer=False,
482
+ ):
483
+ super().__init__()
484
+ if use_spatial_transformer:
485
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
486
+
487
+ if context_dim is not None:
488
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
489
+ from omegaconf.listconfig import ListConfig
490
+ if type(context_dim) == ListConfig:
491
+ context_dim = list(context_dim)
492
+
493
+ if num_heads_upsample == -1:
494
+ num_heads_upsample = num_heads
495
+
496
+ if num_heads == -1:
497
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
498
+
499
+ if num_head_channels == -1:
500
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
501
+
502
+ self.image_size = image_size
503
+ self.in_channels = in_channels
504
+ self.model_channels = model_channels
505
+ self.out_channels = out_channels
506
+ if isinstance(num_res_blocks, int):
507
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
508
+ else:
509
+ if len(num_res_blocks) != len(channel_mult):
510
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
511
+ "as a list/tuple (per-level) with the same length as channel_mult")
512
+ self.num_res_blocks = num_res_blocks
513
+ if disable_self_attentions is not None:
514
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
515
+ assert len(disable_self_attentions) == len(channel_mult)
516
+ if num_attention_blocks is not None:
517
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
518
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
519
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
520
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
521
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
522
+ f"attention will still not be set.")
523
+
524
+ self.attention_resolutions = attention_resolutions
525
+ self.dropout = dropout
526
+ self.channel_mult = channel_mult
527
+ self.conv_resample = conv_resample
528
+ self.num_classes = num_classes
529
+ self.use_checkpoint = use_checkpoint
530
+ self.dtype = th.float16 if use_fp16 else th.float32
531
+ self.num_heads = num_heads
532
+ self.num_head_channels = num_head_channels
533
+ self.num_heads_upsample = num_heads_upsample
534
+ self.predict_codebook_ids = n_embed is not None
535
+
536
+ time_embed_dim = model_channels * 4
537
+ self.time_embed = nn.Sequential(
538
+ linear(model_channels, time_embed_dim),
539
+ nn.SiLU(),
540
+ linear(time_embed_dim, time_embed_dim),
541
+ )
542
+
543
+ if self.num_classes is not None:
544
+ if isinstance(self.num_classes, int):
545
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
546
+ elif self.num_classes == "continuous":
547
+ print("setting up linear c_adm embedding layer")
548
+ self.label_emb = nn.Linear(1, time_embed_dim)
549
+ else:
550
+ raise ValueError()
551
+
552
+ self.input_blocks = nn.ModuleList(
553
+ [
554
+ TimestepEmbedSequential(
555
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
556
+ )
557
+ ]
558
+ )
559
+ self._feature_size = model_channels
560
+ input_block_chans = [model_channels]
561
+ ch = model_channels
562
+ ds = 1
563
+ for level, mult in enumerate(channel_mult):
564
+ for nr in range(self.num_res_blocks[level]):
565
+ layers = [
566
+ ResBlock(
567
+ ch,
568
+ time_embed_dim,
569
+ dropout,
570
+ out_channels=mult * model_channels,
571
+ dims=dims,
572
+ use_checkpoint=use_checkpoint,
573
+ use_scale_shift_norm=use_scale_shift_norm,
574
+ )
575
+ ]
576
+ ch = mult * model_channels
577
+ if ds in attention_resolutions:
578
+ if num_head_channels == -1:
579
+ dim_head = ch // num_heads
580
+ else:
581
+ num_heads = ch // num_head_channels
582
+ dim_head = num_head_channels
583
+ if legacy:
584
+ #num_heads = 1
585
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
586
+ if exists(disable_self_attentions):
587
+ disabled_sa = disable_self_attentions[level]
588
+ else:
589
+ disabled_sa = False
590
+
591
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
592
+ layers.append(
593
+ AttentionBlock(
594
+ ch,
595
+ use_checkpoint=use_checkpoint,
596
+ num_heads=num_heads,
597
+ num_head_channels=dim_head,
598
+ use_new_attention_order=use_new_attention_order,
599
+ ) if not use_spatial_transformer else SpatialTransformer(
600
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
601
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
602
+ use_checkpoint=use_checkpoint
603
+ )
604
+ )
605
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
606
+ self._feature_size += ch
607
+ input_block_chans.append(ch)
608
+ if level != len(channel_mult) - 1:
609
+ out_ch = ch
610
+ self.input_blocks.append(
611
+ TimestepEmbedSequential(
612
+ ResBlock(
613
+ ch,
614
+ time_embed_dim,
615
+ dropout,
616
+ out_channels=out_ch,
617
+ dims=dims,
618
+ use_checkpoint=use_checkpoint,
619
+ use_scale_shift_norm=use_scale_shift_norm,
620
+ down=True,
621
+ )
622
+ if resblock_updown
623
+ else Downsample(
624
+ ch, conv_resample, dims=dims, out_channels=out_ch
625
+ )
626
+ )
627
+ )
628
+ ch = out_ch
629
+ input_block_chans.append(ch)
630
+ ds *= 2
631
+ self._feature_size += ch
632
+
633
+ if num_head_channels == -1:
634
+ dim_head = ch // num_heads
635
+ else:
636
+ num_heads = ch // num_head_channels
637
+ dim_head = num_head_channels
638
+ if legacy:
639
+ #num_heads = 1
640
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
641
+ self.middle_block = TimestepEmbedSequential(
642
+ ResBlock(
643
+ ch,
644
+ time_embed_dim,
645
+ dropout,
646
+ dims=dims,
647
+ use_checkpoint=use_checkpoint,
648
+ use_scale_shift_norm=use_scale_shift_norm,
649
+ ),
650
+ AttentionBlock(
651
+ ch,
652
+ use_checkpoint=use_checkpoint,
653
+ num_heads=num_heads,
654
+ num_head_channels=dim_head,
655
+ use_new_attention_order=use_new_attention_order,
656
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
657
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
658
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
659
+ use_checkpoint=use_checkpoint
660
+ ),
661
+ ResBlock(
662
+ ch,
663
+ time_embed_dim,
664
+ dropout,
665
+ dims=dims,
666
+ use_checkpoint=use_checkpoint,
667
+ use_scale_shift_norm=use_scale_shift_norm,
668
+ ),
669
+ )
670
+ self._feature_size += ch
671
+
672
+ self.output_blocks = nn.ModuleList([])
673
+ for level, mult in list(enumerate(channel_mult))[::-1]:
674
+ for i in range(self.num_res_blocks[level] + 1):
675
+ ich = input_block_chans.pop()
676
+ layers = [
677
+ ResBlock(
678
+ ch + ich,
679
+ time_embed_dim,
680
+ dropout,
681
+ out_channels=model_channels * mult,
682
+ dims=dims,
683
+ use_checkpoint=use_checkpoint,
684
+ use_scale_shift_norm=use_scale_shift_norm,
685
+ )
686
+ ]
687
+ ch = model_channels * mult
688
+ if ds in attention_resolutions:
689
+ if num_head_channels == -1:
690
+ dim_head = ch // num_heads
691
+ else:
692
+ num_heads = ch // num_head_channels
693
+ dim_head = num_head_channels
694
+ if legacy:
695
+ #num_heads = 1
696
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
697
+ if exists(disable_self_attentions):
698
+ disabled_sa = disable_self_attentions[level]
699
+ else:
700
+ disabled_sa = False
701
+
702
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
703
+ layers.append(
704
+ AttentionBlock(
705
+ ch,
706
+ use_checkpoint=use_checkpoint,
707
+ num_heads=num_heads_upsample,
708
+ num_head_channels=dim_head,
709
+ use_new_attention_order=use_new_attention_order,
710
+ ) if not use_spatial_transformer else SpatialTransformer(
711
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
712
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
713
+ use_checkpoint=use_checkpoint
714
+ )
715
+ )
716
+ if level and i == self.num_res_blocks[level]:
717
+ out_ch = ch
718
+ layers.append(
719
+ ResBlock(
720
+ ch,
721
+ time_embed_dim,
722
+ dropout,
723
+ out_channels=out_ch,
724
+ dims=dims,
725
+ use_checkpoint=use_checkpoint,
726
+ use_scale_shift_norm=use_scale_shift_norm,
727
+ up=True,
728
+ )
729
+ if resblock_updown
730
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
731
+ )
732
+ ds //= 2
733
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
734
+ self._feature_size += ch
735
+
736
+ self.out = nn.Sequential(
737
+ normalization(ch),
738
+ nn.SiLU(),
739
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
740
+ )
741
+ if self.predict_codebook_ids:
742
+ self.id_predictor = nn.Sequential(
743
+ normalization(ch),
744
+ conv_nd(dims, model_channels, n_embed, 1),
745
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
746
+ )
747
+
748
+ def convert_to_fp16(self):
749
+ """
750
+ Convert the torso of the model to float16.
751
+ """
752
+ self.input_blocks.apply(convert_module_to_f16)
753
+ self.middle_block.apply(convert_module_to_f16)
754
+ self.output_blocks.apply(convert_module_to_f16)
755
+
756
+ def convert_to_fp32(self):
757
+ """
758
+ Convert the torso of the model to float32.
759
+ """
760
+ self.input_blocks.apply(convert_module_to_f32)
761
+ self.middle_block.apply(convert_module_to_f32)
762
+ self.output_blocks.apply(convert_module_to_f32)
763
+
764
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
765
+ """
766
+ Apply the model to an input batch.
767
+ :param x: an [N x C x ...] Tensor of inputs.
768
+ :param timesteps: a 1-D batch of timesteps.
769
+ :param context: conditioning plugged in via crossattn
770
+ :param y: an [N] Tensor of labels, if class-conditional.
771
+ :return: an [N x C x ...] Tensor of outputs.
772
+ """
773
+ assert (y is not None) == (
774
+ self.num_classes is not None
775
+ ), "must specify y if and only if the model is class-conditional"
776
+ hs = []
777
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
778
+ emb = self.time_embed(t_emb)
779
+
780
+ if self.num_classes is not None:
781
+ assert y.shape[0] == x.shape[0]
782
+ emb = emb + self.label_emb(y)
783
+
784
+ h = x.type(self.dtype)
785
+ for module in self.input_blocks:
786
+ h = module(h, emb, context)
787
+ hs.append(h)
788
+ h = self.middle_block(h, emb, context)
789
+ for module in self.output_blocks:
790
+ h = th.cat([h, hs.pop()], dim=1)
791
+ h = module(h, emb, context)
792
+ h = h.type(x.dtype)
793
+ if self.predict_codebook_ids:
794
+ return self.id_predictor(h)
795
+ else:
796
+ return self.out(h)
ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/upscaling.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from functools import partial
5
+
6
+ from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
7
+ from ldm.util import default
8
+
9
+
10
+ class AbstractLowScaleModel(nn.Module):
11
+ # for concatenating a downsampled image to the latent representation
12
+ def __init__(self, noise_schedule_config=None):
13
+ super(AbstractLowScaleModel, self).__init__()
14
+ if noise_schedule_config is not None:
15
+ self.register_schedule(**noise_schedule_config)
16
+
17
+ def register_schedule(self, beta_schedule="linear", timesteps=1000,
18
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
19
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
20
+ cosine_s=cosine_s)
21
+ alphas = 1. - betas
22
+ alphas_cumprod = np.cumprod(alphas, axis=0)
23
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
24
+
25
+ timesteps, = betas.shape
26
+ self.num_timesteps = int(timesteps)
27
+ self.linear_start = linear_start
28
+ self.linear_end = linear_end
29
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
30
+
31
+ to_torch = partial(torch.tensor, dtype=torch.float32)
32
+
33
+ self.register_buffer('betas', to_torch(betas))
34
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
36
+
37
+ # calculations for diffusion q(x_t | x_{t-1}) and others
38
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
39
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
40
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
41
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
42
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
43
+
44
+ def q_sample(self, x_start, t, noise=None):
45
+ noise = default(noise, lambda: torch.randn_like(x_start))
46
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
47
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
48
+
49
+ def forward(self, x):
50
+ return x, None
51
+
52
+ def decode(self, x):
53
+ return x
54
+
55
+
56
+ class SimpleImageConcat(AbstractLowScaleModel):
57
+ # no noise level conditioning
58
+ def __init__(self):
59
+ super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
60
+ self.max_noise_level = 0
61
+
62
+ def forward(self, x):
63
+ # fix to constant noise level
64
+ return x, torch.zeros(x.shape[0], device=x.device).long()
65
+
66
+
67
+ class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
68
+ def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
69
+ super().__init__(noise_schedule_config=noise_schedule_config)
70
+ self.max_noise_level = max_noise_level
71
+
72
+ def forward(self, x, noise_level=None):
73
+ if noise_level is None:
74
+ noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
75
+ else:
76
+ assert isinstance(noise_level, torch.Tensor)
77
+ z = self.q_sample(x, noise_level)
78
+ return z, noise_level
79
+
80
+
81
+
ttts/AA_diffusion_deprecated/ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "sqrt_linear":
38
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
+ elif schedule == "sqrt":
40
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
+ else:
42
+ raise ValueError(f"schedule '{schedule}' unknown.")
43
+ return betas.numpy()
44
+
45
+
46
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
+ if ddim_discr_method == 'uniform':
48
+ c = num_ddpm_timesteps // num_ddim_timesteps
49
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
+ elif ddim_discr_method == 'quad':
51
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
+ else:
53
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
+
55
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
+ steps_out = ddim_timesteps + 1
58
+ if verbose:
59
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
60
+ return steps_out
61
+
62
+
63
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
+ # select alphas for computing the variance schedule
65
+ alphas = alphacums[ddim_timesteps]
66
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
+
68
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
69
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
+ if verbose:
71
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
+ print(f'For the chosen value of eta, which is {eta}, '
73
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
+ return sigmas, alphas, alphas_prev
75
+
76
+
77
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
+ """
79
+ Create a beta schedule that discretizes the given alpha_t_bar function,
80
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
81
+ :param num_diffusion_timesteps: the number of betas to produce.
82
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
+ produces the cumulative product of (1-beta) up to that
84
+ part of the diffusion process.
85
+ :param max_beta: the maximum beta to use; use values lower than 1 to
86
+ prevent singularities.
87
+ """
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
+ return np.array(betas)
94
+
95
+
96
+ def extract_into_tensor(a, t, x_shape):
97
+ b, *_ = t.shape
98
+ out = a.gather(-1, t)
99
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
+
101
+
102
+ def checkpoint(func, inputs, params, flag):
103
+ """
104
+ Evaluate a function without caching intermediate activations, allowing for
105
+ reduced memory at the expense of extra compute in the backward pass.
106
+ :param func: the function to evaluate.
107
+ :param inputs: the argument sequence to pass to `func`.
108
+ :param params: a sequence of parameters `func` depends on but does not
109
+ explicitly take as arguments.
110
+ :param flag: if False, disable gradient checkpointing.
111
+ """
112
+ if flag:
113
+ args = tuple(inputs) + tuple(params)
114
+ # print(func)
115
+ return CheckpointFunction.apply(func, len(inputs), *args)
116
+ else:
117
+ return func(*inputs)
118
+
119
+
120
+ class CheckpointFunction(torch.autograd.Function):
121
+ @staticmethod
122
+ def forward(ctx, run_function, length, *args):
123
+ ctx.run_function = run_function
124
+ ctx.input_tensors = list(args[:length])
125
+ ctx.input_params = list(args[length:])
126
+ ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
127
+ "dtype": torch.get_autocast_gpu_dtype(),
128
+ "cache_enabled": torch.is_autocast_cache_enabled()}
129
+ with torch.no_grad():
130
+ output_tensors = ctx.run_function(*ctx.input_tensors)
131
+ return output_tensors
132
+
133
+ @staticmethod
134
+ def backward(ctx, *output_grads):
135
+ for x in ctx.input_tensors:
136
+ if x == None:
137
+ print(ctx.run_function)
138
+ print(ctx.input_tensors)
139
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
140
+ with torch.enable_grad(), \
141
+ torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
142
+ # Fixes a bug where the first op in run_function modifies the
143
+ # Tensor storage in place, which is not allowed for detach()'d
144
+ # Tensors.
145
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
146
+ output_tensors = ctx.run_function(*shallow_copies)
147
+ input_grads = torch.autograd.grad(
148
+ output_tensors,
149
+ ctx.input_tensors + ctx.input_params,
150
+ output_grads,
151
+ allow_unused=True,
152
+ )
153
+ del ctx.input_tensors
154
+ del ctx.input_params
155
+ del output_tensors
156
+ return (None, None) + input_grads
157
+
158
+
159
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
160
+ """
161
+ Create sinusoidal timestep embeddings.
162
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
163
+ These may be fractional.
164
+ :param dim: the dimension of the output.
165
+ :param max_period: controls the minimum frequency of the embeddings.
166
+ :return: an [N x dim] Tensor of positional embeddings.
167
+ """
168
+ if not repeat_only:
169
+ half = dim // 2
170
+ freqs = torch.exp(
171
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
172
+ ).to(device=timesteps.device)
173
+ args = timesteps[:, None].float() * freqs[None]
174
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
175
+ if dim % 2:
176
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
177
+ else:
178
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
179
+ return embedding
180
+
181
+
182
+ def zero_module(module):
183
+ """
184
+ Zero out the parameters of a module and return it.
185
+ """
186
+ for p in module.parameters():
187
+ p.detach().zero_()
188
+ return module
189
+
190
+
191
+ def scale_module(module, scale):
192
+ """
193
+ Scale the parameters of a module and return it.
194
+ """
195
+ for p in module.parameters():
196
+ p.detach().mul_(scale)
197
+ return module
198
+
199
+
200
+ def mean_flat(tensor):
201
+ """
202
+ Take the mean over all non-batch dimensions.
203
+ """
204
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
205
+
206
+
207
+ def normalization(channels):
208
+ """
209
+ Make a standard normalization layer.
210
+ :param channels: number of input channels.
211
+ :return: an nn.Module for normalization.
212
+ """
213
+ return GroupNorm32(32, channels)
214
+
215
+
216
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
217
+ class SiLU(nn.Module):
218
+ def forward(self, x):
219
+ return x * torch.sigmoid(x)
220
+
221
+
222
+ class GroupNorm32(nn.GroupNorm):
223
+ def forward(self, x):
224
+ return super().forward(x.float()).type(x.dtype)
225
+
226
+ def conv_nd(dims, *args, **kwargs):
227
+ """
228
+ Create a 1D, 2D, or 3D convolution module.
229
+ """
230
+ if dims == 1:
231
+ return nn.Conv1d(*args, **kwargs)
232
+ elif dims == 2:
233
+ return nn.Conv2d(*args, **kwargs)
234
+ elif dims == 3:
235
+ return nn.Conv3d(*args, **kwargs)
236
+ raise ValueError(f"unsupported dimensions: {dims}")
237
+
238
+
239
+ def linear(*args, **kwargs):
240
+ """
241
+ Create a linear module.
242
+ """
243
+ return nn.Linear(*args, **kwargs)
244
+
245
+
246
+ def avg_pool_nd(dims, *args, **kwargs):
247
+ """
248
+ Create a 1D, 2D, or 3D average pooling module.
249
+ """
250
+ if dims == 1:
251
+ return nn.AvgPool1d(*args, **kwargs)
252
+ elif dims == 2:
253
+ return nn.AvgPool2d(*args, **kwargs)
254
+ elif dims == 3:
255
+ return nn.AvgPool3d(*args, **kwargs)
256
+ raise ValueError(f"unsupported dimensions: {dims}")
257
+
258
+
259
+ class HybridConditioner(nn.Module):
260
+
261
+ def __init__(self, c_concat_config, c_crossattn_config):
262
+ super().__init__()
263
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
264
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
265
+
266
+ def forward(self, c_concat, c_crossattn):
267
+ c_concat = self.concat_conditioner(c_concat)
268
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
269
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
270
+
271
+
272
+ def noise_like(shape, device, repeat=False):
273
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
274
+ noise = lambda: torch.randn(shape, device=device)
275
+ return repeat_noise() if repeat else noise()
ttts/AA_diffusion_deprecated/ldm/modules/distributions/__init__.py ADDED
File without changes
ttts/AA_diffusion_deprecated/ldm/modules/distributions/distributions.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ class AbstractDistribution:
6
+ def sample(self):
7
+ raise NotImplementedError()
8
+
9
+ def mode(self):
10
+ raise NotImplementedError()
11
+
12
+
13
+ class DiracDistribution(AbstractDistribution):
14
+ def __init__(self, value):
15
+ self.value = value
16
+
17
+ def sample(self):
18
+ return self.value
19
+
20
+ def mode(self):
21
+ return self.value
22
+
23
+
24
+ class DiagonalGaussianDistribution(object):
25
+ def __init__(self, parameters, deterministic=False):
26
+ self.parameters = parameters
27
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
+ self.deterministic = deterministic
30
+ self.std = torch.exp(0.5 * self.logvar)
31
+ self.var = torch.exp(self.logvar)
32
+ if self.deterministic:
33
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
+
35
+ def sample(self):
36
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
37
+ return x
38
+
39
+ def kl(self, other=None):
40
+ if self.deterministic:
41
+ return torch.Tensor([0.])
42
+ else:
43
+ if other is None:
44
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
45
+ + self.var - 1.0 - self.logvar,
46
+ dim=[1, 2, 3])
47
+ else:
48
+ return 0.5 * torch.sum(
49
+ torch.pow(self.mean - other.mean, 2) / other.var
50
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
51
+ dim=[1, 2, 3])
52
+
53
+ def nll(self, sample, dims=[1,2,3]):
54
+ if self.deterministic:
55
+ return torch.Tensor([0.])
56
+ logtwopi = np.log(2.0 * np.pi)
57
+ return 0.5 * torch.sum(
58
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
59
+ dim=dims)
60
+
61
+ def mode(self):
62
+ return self.mean
63
+
64
+
65
+ def normal_kl(mean1, logvar1, mean2, logvar2):
66
+ """
67
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
68
+ Compute the KL divergence between two gaussians.
69
+ Shapes are automatically broadcasted, so batches can be compared to
70
+ scalars, among other use cases.
71
+ """
72
+ tensor = None
73
+ for obj in (mean1, logvar1, mean2, logvar2):
74
+ if isinstance(obj, torch.Tensor):
75
+ tensor = obj
76
+ break
77
+ assert tensor is not None, "at least one argument must be a Tensor"
78
+
79
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
80
+ # Tensors, but it does not work for torch.exp().
81
+ logvar1, logvar2 = [
82
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
83
+ for x in (logvar1, logvar2)
84
+ ]
85
+
86
+ return 0.5 * (
87
+ -1.0
88
+ + logvar2
89
+ - logvar1
90
+ + torch.exp(logvar1 - logvar2)
91
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
92
+ )
ttts/AA_diffusion_deprecated/ldm/modules/ema.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class LitEma(nn.Module):
6
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
7
+ super().__init__()
8
+ if decay < 0.0 or decay > 1.0:
9
+ raise ValueError('Decay must be between 0 and 1')
10
+
11
+ self.m_name2s_name = {}
12
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
+ self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
14
+ else torch.tensor(-1, dtype=torch.int))
15
+
16
+ for name, p in model.named_parameters():
17
+ if p.requires_grad:
18
+ # remove as '.'-character is not allowed in buffers
19
+ s_name = name.replace('.', '')
20
+ self.m_name2s_name.update({name: s_name})
21
+ self.register_buffer(s_name, p.clone().detach().data)
22
+
23
+ self.collected_params = []
24
+
25
+ def reset_num_updates(self):
26
+ del self.num_updates
27
+ self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
28
+
29
+ def forward(self, model):
30
+ decay = self.decay
31
+
32
+ if self.num_updates >= 0:
33
+ self.num_updates += 1
34
+ decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
35
+
36
+ one_minus_decay = 1.0 - decay
37
+
38
+ with torch.no_grad():
39
+ m_param = dict(model.named_parameters())
40
+ shadow_params = dict(self.named_buffers())
41
+
42
+ for key in m_param:
43
+ if m_param[key].requires_grad:
44
+ sname = self.m_name2s_name[key]
45
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
46
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
47
+ else:
48
+ assert not key in self.m_name2s_name
49
+
50
+ def copy_to(self, model):
51
+ m_param = dict(model.named_parameters())
52
+ shadow_params = dict(self.named_buffers())
53
+ for key in m_param:
54
+ if m_param[key].requires_grad:
55
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
56
+ else:
57
+ assert not key in self.m_name2s_name
58
+
59
+ def store(self, parameters):
60
+ """
61
+ Save the current parameters for restoring later.
62
+ Args:
63
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
64
+ temporarily stored.
65
+ """
66
+ self.collected_params = [param.clone() for param in parameters]
67
+
68
+ def restore(self, parameters):
69
+ """
70
+ Restore the parameters stored with the `store` method.
71
+ Useful to validate the model with EMA parameters without affecting the
72
+ original optimization process. Store the parameters before the
73
+ `copy_to` method. After validation (or model saving), use this to
74
+ restore the former parameters.
75
+ Args:
76
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
77
+ updated with the stored parameters.
78
+ """
79
+ for c_param, param in zip(self.collected_params, parameters):
80
+ param.data.copy_(c_param.data)
ttts/AA_diffusion_deprecated/ldm/modules/encoders/__init__.py ADDED
File without changes
ttts/AA_diffusion_deprecated/ldm/modules/encoders/modules.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.utils.checkpoint import checkpoint
4
+
5
+ from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
6
+
7
+ import open_clip
8
+ from ldm.util import default, count_params
9
+
10
+
11
+ class AbstractEncoder(nn.Module):
12
+ def __init__(self):
13
+ super().__init__()
14
+
15
+ def encode(self, *args, **kwargs):
16
+ raise NotImplementedError
17
+
18
+
19
+ class IdentityEncoder(AbstractEncoder):
20
+
21
+ def encode(self, x):
22
+ return x
23
+
24
+
25
+ class ClassEmbedder(nn.Module):
26
+ def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
27
+ super().__init__()
28
+ self.key = key
29
+ self.embedding = nn.Embedding(n_classes, embed_dim)
30
+ self.n_classes = n_classes
31
+ self.ucg_rate = ucg_rate
32
+
33
+ def forward(self, batch, key=None, disable_dropout=False):
34
+ if key is None:
35
+ key = self.key
36
+ # this is for use in crossattn
37
+ c = batch[key][:, None]
38
+ if self.ucg_rate > 0. and not disable_dropout:
39
+ mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
40
+ c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
41
+ c = c.long()
42
+ c = self.embedding(c)
43
+ return c
44
+
45
+ def get_unconditional_conditioning(self, bs, device="cuda"):
46
+ uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
47
+ uc = torch.ones((bs,), device=device) * uc_class
48
+ uc = {self.key: uc}
49
+ return uc
50
+
51
+
52
+ def disabled_train(self, mode=True):
53
+ """Overwrite model.train with this function to make sure train/eval mode
54
+ does not change anymore."""
55
+ return self
56
+
57
+
58
+ class FrozenT5Embedder(AbstractEncoder):
59
+ """Uses the T5 transformer encoder for text"""
60
+ def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
61
+ super().__init__()
62
+ self.tokenizer = T5Tokenizer.from_pretrained(version)
63
+ self.transformer = T5EncoderModel.from_pretrained(version)
64
+ self.device = device
65
+ self.max_length = max_length # TODO: typical value?
66
+ if freeze:
67
+ self.freeze()
68
+
69
+ def freeze(self):
70
+ self.transformer = self.transformer.eval()
71
+ #self.train = disabled_train
72
+ for param in self.parameters():
73
+ param.requires_grad = False
74
+
75
+ def forward(self, text):
76
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
77
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
78
+ tokens = batch_encoding["input_ids"].to(self.device)
79
+ outputs = self.transformer(input_ids=tokens)
80
+
81
+ z = outputs.last_hidden_state
82
+ return z
83
+
84
+ def encode(self, text):
85
+ return self(text)
86
+
87
+
88
+ class FrozenCLIPEmbedder(AbstractEncoder):
89
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
90
+ LAYERS = [
91
+ "last",
92
+ "pooled",
93
+ "hidden"
94
+ ]
95
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
96
+ freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
97
+ super().__init__()
98
+ assert layer in self.LAYERS
99
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
100
+ self.transformer = CLIPTextModel.from_pretrained(version)
101
+ self.device = device
102
+ self.max_length = max_length
103
+ if freeze:
104
+ self.freeze()
105
+ self.layer = layer
106
+ self.layer_idx = layer_idx
107
+ if layer == "hidden":
108
+ assert layer_idx is not None
109
+ assert 0 <= abs(layer_idx) <= 12
110
+
111
+ def freeze(self):
112
+ self.transformer = self.transformer.eval()
113
+ #self.train = disabled_train
114
+ for param in self.parameters():
115
+ param.requires_grad = False
116
+
117
+ def forward(self, text):
118
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
119
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
120
+ tokens = batch_encoding["input_ids"].to(self.device)
121
+ outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
122
+ if self.layer == "last":
123
+ z = outputs.last_hidden_state
124
+ elif self.layer == "pooled":
125
+ z = outputs.pooler_output[:, None, :]
126
+ else:
127
+ z = outputs.hidden_states[self.layer_idx]
128
+ return z
129
+
130
+ def encode(self, text):
131
+ return self(text)
132
+
133
+
134
+ class FrozenOpenCLIPEmbedder(AbstractEncoder):
135
+ """
136
+ Uses the OpenCLIP transformer encoder for text
137
+ """
138
+ LAYERS = [
139
+ #"pooled",
140
+ "last",
141
+ "penultimate"
142
+ ]
143
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
144
+ freeze=True, layer="last"):
145
+ super().__init__()
146
+ assert layer in self.LAYERS
147
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
148
+ del model.visual
149
+ self.model = model
150
+
151
+ self.device = device
152
+ self.max_length = max_length
153
+ if freeze:
154
+ self.freeze()
155
+ self.layer = layer
156
+ if self.layer == "last":
157
+ self.layer_idx = 0
158
+ elif self.layer == "penultimate":
159
+ self.layer_idx = 1
160
+ else:
161
+ raise NotImplementedError()
162
+
163
+ def freeze(self):
164
+ self.model = self.model.eval()
165
+ for param in self.parameters():
166
+ param.requires_grad = False
167
+
168
+ def forward(self, text):
169
+ tokens = open_clip.tokenize(text)
170
+ z = self.encode_with_transformer(tokens.to(self.device))
171
+ return z
172
+
173
+ def encode_with_transformer(self, text):
174
+ x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
175
+ x = x + self.model.positional_embedding
176
+ x = x.permute(1, 0, 2) # NLD -> LND
177
+ x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
178
+ x = x.permute(1, 0, 2) # LND -> NLD
179
+ x = self.model.ln_final(x)
180
+ return x
181
+
182
+ def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
183
+ for i, r in enumerate(self.model.transformer.resblocks):
184
+ if i == len(self.model.transformer.resblocks) - self.layer_idx:
185
+ break
186
+ if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
187
+ x = checkpoint(r, x, attn_mask)
188
+ else:
189
+ x = r(x, attn_mask=attn_mask)
190
+ return x
191
+
192
+ def encode(self, text):
193
+ return self(text)
194
+
195
+
196
+ class FrozenCLIPT5Encoder(AbstractEncoder):
197
+ def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
198
+ clip_max_length=77, t5_max_length=77):
199
+ super().__init__()
200
+ self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
201
+ self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
202
+ print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
203
+ f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
204
+
205
+ def encode(self, text):
206
+ return self(text)
207
+
208
+ def forward(self, text):
209
+ clip_z = self.clip_encoder.encode(text)
210
+ t5_z = self.t5_encoder.encode(text)
211
+ return [clip_z, t5_z]
212
+
213
+
ttts/AA_diffusion_deprecated/ldm/modules/image_degradation/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
2
+ from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
ttts/AA_diffusion_deprecated/ldm/modules/image_degradation/bsrgan.py ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ # --------------------------------------------
4
+ # Super-Resolution
5
+ # --------------------------------------------
6
+ #
7
+ # Kai Zhang (cskaizhang@gmail.com)
8
+ # https://github.com/cszn
9
+ # From 2019/03--2021/08
10
+ # --------------------------------------------
11
+ """
12
+
13
+ import numpy as np
14
+ import cv2
15
+ import torch
16
+
17
+ from functools import partial
18
+ import random
19
+ from scipy import ndimage
20
+ import scipy
21
+ import scipy.stats as ss
22
+ from scipy.interpolate import interp2d
23
+ from scipy.linalg import orth
24
+ import albumentations
25
+
26
+ import ldm.modules.image_degradation.utils_image as util
27
+
28
+
29
+ def modcrop_np(img, sf):
30
+ '''
31
+ Args:
32
+ img: numpy image, WxH or WxHxC
33
+ sf: scale factor
34
+ Return:
35
+ cropped image
36
+ '''
37
+ w, h = img.shape[:2]
38
+ im = np.copy(img)
39
+ return im[:w - w % sf, :h - h % sf, ...]
40
+
41
+
42
+ """
43
+ # --------------------------------------------
44
+ # anisotropic Gaussian kernels
45
+ # --------------------------------------------
46
+ """
47
+
48
+
49
+ def analytic_kernel(k):
50
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
51
+ k_size = k.shape[0]
52
+ # Calculate the big kernels size
53
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
54
+ # Loop over the small kernel to fill the big one
55
+ for r in range(k_size):
56
+ for c in range(k_size):
57
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
58
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
59
+ crop = k_size // 2
60
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
61
+ # Normalize to 1
62
+ return cropped_big_k / cropped_big_k.sum()
63
+
64
+
65
+ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
66
+ """ generate an anisotropic Gaussian kernel
67
+ Args:
68
+ ksize : e.g., 15, kernel size
69
+ theta : [0, pi], rotation angle range
70
+ l1 : [0.1,50], scaling of eigenvalues
71
+ l2 : [0.1,l1], scaling of eigenvalues
72
+ If l1 = l2, will get an isotropic Gaussian kernel.
73
+ Returns:
74
+ k : kernel
75
+ """
76
+
77
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
78
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
79
+ D = np.array([[l1, 0], [0, l2]])
80
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
81
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
82
+
83
+ return k
84
+
85
+
86
+ def gm_blur_kernel(mean, cov, size=15):
87
+ center = size / 2.0 + 0.5
88
+ k = np.zeros([size, size])
89
+ for y in range(size):
90
+ for x in range(size):
91
+ cy = y - center + 1
92
+ cx = x - center + 1
93
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
94
+
95
+ k = k / np.sum(k)
96
+ return k
97
+
98
+
99
+ def shift_pixel(x, sf, upper_left=True):
100
+ """shift pixel for super-resolution with different scale factors
101
+ Args:
102
+ x: WxHxC or WxH
103
+ sf: scale factor
104
+ upper_left: shift direction
105
+ """
106
+ h, w = x.shape[:2]
107
+ shift = (sf - 1) * 0.5
108
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
109
+ if upper_left:
110
+ x1 = xv + shift
111
+ y1 = yv + shift
112
+ else:
113
+ x1 = xv - shift
114
+ y1 = yv - shift
115
+
116
+ x1 = np.clip(x1, 0, w - 1)
117
+ y1 = np.clip(y1, 0, h - 1)
118
+
119
+ if x.ndim == 2:
120
+ x = interp2d(xv, yv, x)(x1, y1)
121
+ if x.ndim == 3:
122
+ for i in range(x.shape[-1]):
123
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
124
+
125
+ return x
126
+
127
+
128
+ def blur(x, k):
129
+ '''
130
+ x: image, NxcxHxW
131
+ k: kernel, Nx1xhxw
132
+ '''
133
+ n, c = x.shape[:2]
134
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
135
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
136
+ k = k.repeat(1, c, 1, 1)
137
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
138
+ x = x.view(1, -1, x.shape[2], x.shape[3])
139
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
140
+ x = x.view(n, c, x.shape[2], x.shape[3])
141
+
142
+ return x
143
+
144
+
145
+ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
146
+ """"
147
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
148
+ # Kai Zhang
149
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
150
+ # max_var = 2.5 * sf
151
+ """
152
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
153
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
154
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
155
+ theta = np.random.rand() * np.pi # random theta
156
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
157
+
158
+ # Set COV matrix using Lambdas and Theta
159
+ LAMBDA = np.diag([lambda_1, lambda_2])
160
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
161
+ [np.sin(theta), np.cos(theta)]])
162
+ SIGMA = Q @ LAMBDA @ Q.T
163
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
164
+
165
+ # Set expectation position (shifting kernel for aligned image)
166
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
167
+ MU = MU[None, None, :, None]
168
+
169
+ # Create meshgrid for Gaussian
170
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
171
+ Z = np.stack([X, Y], 2)[:, :, :, None]
172
+
173
+ # Calcualte Gaussian for every pixel of the kernel
174
+ ZZ = Z - MU
175
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
176
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
177
+
178
+ # shift the kernel so it will be centered
179
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
180
+
181
+ # Normalize the kernel and return
182
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
183
+ kernel = raw_kernel / np.sum(raw_kernel)
184
+ return kernel
185
+
186
+
187
+ def fspecial_gaussian(hsize, sigma):
188
+ hsize = [hsize, hsize]
189
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
190
+ std = sigma
191
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
192
+ arg = -(x * x + y * y) / (2 * std * std)
193
+ h = np.exp(arg)
194
+ h[h < scipy.finfo(float).eps * h.max()] = 0
195
+ sumh = h.sum()
196
+ if sumh != 0:
197
+ h = h / sumh
198
+ return h
199
+
200
+
201
+ def fspecial_laplacian(alpha):
202
+ alpha = max([0, min([alpha, 1])])
203
+ h1 = alpha / (alpha + 1)
204
+ h2 = (1 - alpha) / (alpha + 1)
205
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
206
+ h = np.array(h)
207
+ return h
208
+
209
+
210
+ def fspecial(filter_type, *args, **kwargs):
211
+ '''
212
+ python code from:
213
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
214
+ '''
215
+ if filter_type == 'gaussian':
216
+ return fspecial_gaussian(*args, **kwargs)
217
+ if filter_type == 'laplacian':
218
+ return fspecial_laplacian(*args, **kwargs)
219
+
220
+
221
+ """
222
+ # --------------------------------------------
223
+ # degradation models
224
+ # --------------------------------------------
225
+ """
226
+
227
+
228
+ def bicubic_degradation(x, sf=3):
229
+ '''
230
+ Args:
231
+ x: HxWxC image, [0, 1]
232
+ sf: down-scale factor
233
+ Return:
234
+ bicubicly downsampled LR image
235
+ '''
236
+ x = util.imresize_np(x, scale=1 / sf)
237
+ return x
238
+
239
+
240
+ def srmd_degradation(x, k, sf=3):
241
+ ''' blur + bicubic downsampling
242
+ Args:
243
+ x: HxWxC image, [0, 1]
244
+ k: hxw, double
245
+ sf: down-scale factor
246
+ Return:
247
+ downsampled LR image
248
+ Reference:
249
+ @inproceedings{zhang2018learning,
250
+ title={Learning a single convolutional super-resolution network for multiple degradations},
251
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
252
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
253
+ pages={3262--3271},
254
+ year={2018}
255
+ }
256
+ '''
257
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
258
+ x = bicubic_degradation(x, sf=sf)
259
+ return x
260
+
261
+
262
+ def dpsr_degradation(x, k, sf=3):
263
+ ''' bicubic downsampling + blur
264
+ Args:
265
+ x: HxWxC image, [0, 1]
266
+ k: hxw, double
267
+ sf: down-scale factor
268
+ Return:
269
+ downsampled LR image
270
+ Reference:
271
+ @inproceedings{zhang2019deep,
272
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
273
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
274
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
275
+ pages={1671--1681},
276
+ year={2019}
277
+ }
278
+ '''
279
+ x = bicubic_degradation(x, sf=sf)
280
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
281
+ return x
282
+
283
+
284
+ def classical_degradation(x, k, sf=3):
285
+ ''' blur + downsampling
286
+ Args:
287
+ x: HxWxC image, [0, 1]/[0, 255]
288
+ k: hxw, double
289
+ sf: down-scale factor
290
+ Return:
291
+ downsampled LR image
292
+ '''
293
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
294
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
295
+ st = 0
296
+ return x[st::sf, st::sf, ...]
297
+
298
+
299
+ def add_sharpening(img, weight=0.5, radius=50, threshold=10):
300
+ """USM sharpening. borrowed from real-ESRGAN
301
+ Input image: I; Blurry image: B.
302
+ 1. K = I + weight * (I - B)
303
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
304
+ 3. Blur mask:
305
+ 4. Out = Mask * K + (1 - Mask) * I
306
+ Args:
307
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
308
+ weight (float): Sharp weight. Default: 1.
309
+ radius (float): Kernel size of Gaussian blur. Default: 50.
310
+ threshold (int):
311
+ """
312
+ if radius % 2 == 0:
313
+ radius += 1
314
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
315
+ residual = img - blur
316
+ mask = np.abs(residual) * 255 > threshold
317
+ mask = mask.astype('float32')
318
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
319
+
320
+ K = img + weight * residual
321
+ K = np.clip(K, 0, 1)
322
+ return soft_mask * K + (1 - soft_mask) * img
323
+
324
+
325
+ def add_blur(img, sf=4):
326
+ wd2 = 4.0 + sf
327
+ wd = 2.0 + 0.2 * sf
328
+ if random.random() < 0.5:
329
+ l1 = wd2 * random.random()
330
+ l2 = wd2 * random.random()
331
+ k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
332
+ else:
333
+ k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
334
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
335
+
336
+ return img
337
+
338
+
339
+ def add_resize(img, sf=4):
340
+ rnum = np.random.rand()
341
+ if rnum > 0.8: # up
342
+ sf1 = random.uniform(1, 2)
343
+ elif rnum < 0.7: # down
344
+ sf1 = random.uniform(0.5 / sf, 1)
345
+ else:
346
+ sf1 = 1.0
347
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
348
+ img = np.clip(img, 0.0, 1.0)
349
+
350
+ return img
351
+
352
+
353
+ # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
354
+ # noise_level = random.randint(noise_level1, noise_level2)
355
+ # rnum = np.random.rand()
356
+ # if rnum > 0.6: # add color Gaussian noise
357
+ # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
358
+ # elif rnum < 0.4: # add grayscale Gaussian noise
359
+ # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
360
+ # else: # add noise
361
+ # L = noise_level2 / 255.
362
+ # D = np.diag(np.random.rand(3))
363
+ # U = orth(np.random.rand(3, 3))
364
+ # conv = np.dot(np.dot(np.transpose(U), D), U)
365
+ # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
366
+ # img = np.clip(img, 0.0, 1.0)
367
+ # return img
368
+
369
+ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
370
+ noise_level = random.randint(noise_level1, noise_level2)
371
+ rnum = np.random.rand()
372
+ if rnum > 0.6: # add color Gaussian noise
373
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
374
+ elif rnum < 0.4: # add grayscale Gaussian noise
375
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
376
+ else: # add noise
377
+ L = noise_level2 / 255.
378
+ D = np.diag(np.random.rand(3))
379
+ U = orth(np.random.rand(3, 3))
380
+ conv = np.dot(np.dot(np.transpose(U), D), U)
381
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
382
+ img = np.clip(img, 0.0, 1.0)
383
+ return img
384
+
385
+
386
+ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
387
+ noise_level = random.randint(noise_level1, noise_level2)
388
+ img = np.clip(img, 0.0, 1.0)
389
+ rnum = random.random()
390
+ if rnum > 0.6:
391
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
392
+ elif rnum < 0.4:
393
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
394
+ else:
395
+ L = noise_level2 / 255.
396
+ D = np.diag(np.random.rand(3))
397
+ U = orth(np.random.rand(3, 3))
398
+ conv = np.dot(np.dot(np.transpose(U), D), U)
399
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
400
+ img = np.clip(img, 0.0, 1.0)
401
+ return img
402
+
403
+
404
+ def add_Poisson_noise(img):
405
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
406
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
407
+ if random.random() < 0.5:
408
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
409
+ else:
410
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
411
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
412
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
413
+ img += noise_gray[:, :, np.newaxis]
414
+ img = np.clip(img, 0.0, 1.0)
415
+ return img
416
+
417
+
418
+ def add_JPEG_noise(img):
419
+ quality_factor = random.randint(30, 95)
420
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
421
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
422
+ img = cv2.imdecode(encimg, 1)
423
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
424
+ return img
425
+
426
+
427
+ def random_crop(lq, hq, sf=4, lq_patchsize=64):
428
+ h, w = lq.shape[:2]
429
+ rnd_h = random.randint(0, h - lq_patchsize)
430
+ rnd_w = random.randint(0, w - lq_patchsize)
431
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
432
+
433
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
434
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
435
+ return lq, hq
436
+
437
+
438
+ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
439
+ """
440
+ This is the degradation model of BSRGAN from the paper
441
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
442
+ ----------
443
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
444
+ sf: scale factor
445
+ isp_model: camera ISP model
446
+ Returns
447
+ -------
448
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
449
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
450
+ """
451
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
452
+ sf_ori = sf
453
+
454
+ h1, w1 = img.shape[:2]
455
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
456
+ h, w = img.shape[:2]
457
+
458
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
459
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
460
+
461
+ hq = img.copy()
462
+
463
+ if sf == 4 and random.random() < scale2_prob: # downsample1
464
+ if np.random.rand() < 0.5:
465
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
466
+ interpolation=random.choice([1, 2, 3]))
467
+ else:
468
+ img = util.imresize_np(img, 1 / 2, True)
469
+ img = np.clip(img, 0.0, 1.0)
470
+ sf = 2
471
+
472
+ shuffle_order = random.sample(range(7), 7)
473
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
474
+ if idx1 > idx2: # keep downsample3 last
475
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
476
+
477
+ for i in shuffle_order:
478
+
479
+ if i == 0:
480
+ img = add_blur(img, sf=sf)
481
+
482
+ elif i == 1:
483
+ img = add_blur(img, sf=sf)
484
+
485
+ elif i == 2:
486
+ a, b = img.shape[1], img.shape[0]
487
+ # downsample2
488
+ if random.random() < 0.75:
489
+ sf1 = random.uniform(1, 2 * sf)
490
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
491
+ interpolation=random.choice([1, 2, 3]))
492
+ else:
493
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
494
+ k_shifted = shift_pixel(k, sf)
495
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
496
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
497
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
498
+ img = np.clip(img, 0.0, 1.0)
499
+
500
+ elif i == 3:
501
+ # downsample3
502
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
503
+ img = np.clip(img, 0.0, 1.0)
504
+
505
+ elif i == 4:
506
+ # add Gaussian noise
507
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
508
+
509
+ elif i == 5:
510
+ # add JPEG noise
511
+ if random.random() < jpeg_prob:
512
+ img = add_JPEG_noise(img)
513
+
514
+ elif i == 6:
515
+ # add processed camera sensor noise
516
+ if random.random() < isp_prob and isp_model is not None:
517
+ with torch.no_grad():
518
+ img, hq = isp_model.forward(img.copy(), hq)
519
+
520
+ # add final JPEG compression noise
521
+ img = add_JPEG_noise(img)
522
+
523
+ # random crop
524
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
525
+
526
+ return img, hq
527
+
528
+
529
+ # todo no isp_model?
530
+ def degradation_bsrgan_variant(image, sf=4, isp_model=None):
531
+ """
532
+ This is the degradation model of BSRGAN from the paper
533
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
534
+ ----------
535
+ sf: scale factor
536
+ isp_model: camera ISP model
537
+ Returns
538
+ -------
539
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
540
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
541
+ """
542
+ image = util.uint2single(image)
543
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
544
+ sf_ori = sf
545
+
546
+ h1, w1 = image.shape[:2]
547
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
548
+ h, w = image.shape[:2]
549
+
550
+ hq = image.copy()
551
+
552
+ if sf == 4 and random.random() < scale2_prob: # downsample1
553
+ if np.random.rand() < 0.5:
554
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
555
+ interpolation=random.choice([1, 2, 3]))
556
+ else:
557
+ image = util.imresize_np(image, 1 / 2, True)
558
+ image = np.clip(image, 0.0, 1.0)
559
+ sf = 2
560
+
561
+ shuffle_order = random.sample(range(7), 7)
562
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
563
+ if idx1 > idx2: # keep downsample3 last
564
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
565
+
566
+ for i in shuffle_order:
567
+
568
+ if i == 0:
569
+ image = add_blur(image, sf=sf)
570
+
571
+ elif i == 1:
572
+ image = add_blur(image, sf=sf)
573
+
574
+ elif i == 2:
575
+ a, b = image.shape[1], image.shape[0]
576
+ # downsample2
577
+ if random.random() < 0.75:
578
+ sf1 = random.uniform(1, 2 * sf)
579
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
580
+ interpolation=random.choice([1, 2, 3]))
581
+ else:
582
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
583
+ k_shifted = shift_pixel(k, sf)
584
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
585
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
586
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
587
+ image = np.clip(image, 0.0, 1.0)
588
+
589
+ elif i == 3:
590
+ # downsample3
591
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
592
+ image = np.clip(image, 0.0, 1.0)
593
+
594
+ elif i == 4:
595
+ # add Gaussian noise
596
+ image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
597
+
598
+ elif i == 5:
599
+ # add JPEG noise
600
+ if random.random() < jpeg_prob:
601
+ image = add_JPEG_noise(image)
602
+
603
+ # elif i == 6:
604
+ # # add processed camera sensor noise
605
+ # if random.random() < isp_prob and isp_model is not None:
606
+ # with torch.no_grad():
607
+ # img, hq = isp_model.forward(img.copy(), hq)
608
+
609
+ # add final JPEG compression noise
610
+ image = add_JPEG_noise(image)
611
+ image = util.single2uint(image)
612
+ example = {"image":image}
613
+ return example
614
+
615
+
616
+ # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
617
+ def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
618
+ """
619
+ This is an extended degradation model by combining
620
+ the degradation models of BSRGAN and Real-ESRGAN
621
+ ----------
622
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
623
+ sf: scale factor
624
+ use_shuffle: the degradation shuffle
625
+ use_sharp: sharpening the img
626
+ Returns
627
+ -------
628
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
629
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
630
+ """
631
+
632
+ h1, w1 = img.shape[:2]
633
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
634
+ h, w = img.shape[:2]
635
+
636
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
637
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
638
+
639
+ if use_sharp:
640
+ img = add_sharpening(img)
641
+ hq = img.copy()
642
+
643
+ if random.random() < shuffle_prob:
644
+ shuffle_order = random.sample(range(13), 13)
645
+ else:
646
+ shuffle_order = list(range(13))
647
+ # local shuffle for noise, JPEG is always the last one
648
+ shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
649
+ shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
650
+
651
+ poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
652
+
653
+ for i in shuffle_order:
654
+ if i == 0:
655
+ img = add_blur(img, sf=sf)
656
+ elif i == 1:
657
+ img = add_resize(img, sf=sf)
658
+ elif i == 2:
659
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
660
+ elif i == 3:
661
+ if random.random() < poisson_prob:
662
+ img = add_Poisson_noise(img)
663
+ elif i == 4:
664
+ if random.random() < speckle_prob:
665
+ img = add_speckle_noise(img)
666
+ elif i == 5:
667
+ if random.random() < isp_prob and isp_model is not None:
668
+ with torch.no_grad():
669
+ img, hq = isp_model.forward(img.copy(), hq)
670
+ elif i == 6:
671
+ img = add_JPEG_noise(img)
672
+ elif i == 7:
673
+ img = add_blur(img, sf=sf)
674
+ elif i == 8:
675
+ img = add_resize(img, sf=sf)
676
+ elif i == 9:
677
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
678
+ elif i == 10:
679
+ if random.random() < poisson_prob:
680
+ img = add_Poisson_noise(img)
681
+ elif i == 11:
682
+ if random.random() < speckle_prob:
683
+ img = add_speckle_noise(img)
684
+ elif i == 12:
685
+ if random.random() < isp_prob and isp_model is not None:
686
+ with torch.no_grad():
687
+ img, hq = isp_model.forward(img.copy(), hq)
688
+ else:
689
+ print('check the shuffle!')
690
+
691
+ # resize to desired size
692
+ img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
693
+ interpolation=random.choice([1, 2, 3]))
694
+
695
+ # add final JPEG compression noise
696
+ img = add_JPEG_noise(img)
697
+
698
+ # random crop
699
+ img, hq = random_crop(img, hq, sf, lq_patchsize)
700
+
701
+ return img, hq
702
+
703
+
704
+ if __name__ == '__main__':
705
+ print("hey")
706
+ img = util.imread_uint('utils/test.png', 3)
707
+ print(img)
708
+ img = util.uint2single(img)
709
+ print(img)
710
+ img = img[:448, :448]
711
+ h = img.shape[0] // 4
712
+ print("resizing to", h)
713
+ sf = 4
714
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
715
+ for i in range(20):
716
+ print(i)
717
+ img_lq = deg_fn(img)
718
+ print(img_lq)
719
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
720
+ print(img_lq.shape)
721
+ print("bicubic", img_lq_bicubic.shape)
722
+ print(img_hq.shape)
723
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
724
+ interpolation=0)
725
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
726
+ interpolation=0)
727
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
728
+ util.imsave(img_concat, str(i) + '.png')
729
+
730
+
ttts/AA_diffusion_deprecated/ldm/modules/image_degradation/bsrgan_light.py ADDED
@@ -0,0 +1,651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ import numpy as np
3
+ import cv2
4
+ import torch
5
+
6
+ from functools import partial
7
+ import random
8
+ from scipy import ndimage
9
+ import scipy
10
+ import scipy.stats as ss
11
+ from scipy.interpolate import interp2d
12
+ from scipy.linalg import orth
13
+ import albumentations
14
+
15
+ import ldm.modules.image_degradation.utils_image as util
16
+
17
+ """
18
+ # --------------------------------------------
19
+ # Super-Resolution
20
+ # --------------------------------------------
21
+ #
22
+ # Kai Zhang (cskaizhang@gmail.com)
23
+ # https://github.com/cszn
24
+ # From 2019/03--2021/08
25
+ # --------------------------------------------
26
+ """
27
+
28
+ def modcrop_np(img, sf):
29
+ '''
30
+ Args:
31
+ img: numpy image, WxH or WxHxC
32
+ sf: scale factor
33
+ Return:
34
+ cropped image
35
+ '''
36
+ w, h = img.shape[:2]
37
+ im = np.copy(img)
38
+ return im[:w - w % sf, :h - h % sf, ...]
39
+
40
+
41
+ """
42
+ # --------------------------------------------
43
+ # anisotropic Gaussian kernels
44
+ # --------------------------------------------
45
+ """
46
+
47
+
48
+ def analytic_kernel(k):
49
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
50
+ k_size = k.shape[0]
51
+ # Calculate the big kernels size
52
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
53
+ # Loop over the small kernel to fill the big one
54
+ for r in range(k_size):
55
+ for c in range(k_size):
56
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
57
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
58
+ crop = k_size // 2
59
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
60
+ # Normalize to 1
61
+ return cropped_big_k / cropped_big_k.sum()
62
+
63
+
64
+ def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
65
+ """ generate an anisotropic Gaussian kernel
66
+ Args:
67
+ ksize : e.g., 15, kernel size
68
+ theta : [0, pi], rotation angle range
69
+ l1 : [0.1,50], scaling of eigenvalues
70
+ l2 : [0.1,l1], scaling of eigenvalues
71
+ If l1 = l2, will get an isotropic Gaussian kernel.
72
+ Returns:
73
+ k : kernel
74
+ """
75
+
76
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
77
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
78
+ D = np.array([[l1, 0], [0, l2]])
79
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
80
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
81
+
82
+ return k
83
+
84
+
85
+ def gm_blur_kernel(mean, cov, size=15):
86
+ center = size / 2.0 + 0.5
87
+ k = np.zeros([size, size])
88
+ for y in range(size):
89
+ for x in range(size):
90
+ cy = y - center + 1
91
+ cx = x - center + 1
92
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
93
+
94
+ k = k / np.sum(k)
95
+ return k
96
+
97
+
98
+ def shift_pixel(x, sf, upper_left=True):
99
+ """shift pixel for super-resolution with different scale factors
100
+ Args:
101
+ x: WxHxC or WxH
102
+ sf: scale factor
103
+ upper_left: shift direction
104
+ """
105
+ h, w = x.shape[:2]
106
+ shift = (sf - 1) * 0.5
107
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
108
+ if upper_left:
109
+ x1 = xv + shift
110
+ y1 = yv + shift
111
+ else:
112
+ x1 = xv - shift
113
+ y1 = yv - shift
114
+
115
+ x1 = np.clip(x1, 0, w - 1)
116
+ y1 = np.clip(y1, 0, h - 1)
117
+
118
+ if x.ndim == 2:
119
+ x = interp2d(xv, yv, x)(x1, y1)
120
+ if x.ndim == 3:
121
+ for i in range(x.shape[-1]):
122
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
123
+
124
+ return x
125
+
126
+
127
+ def blur(x, k):
128
+ '''
129
+ x: image, NxcxHxW
130
+ k: kernel, Nx1xhxw
131
+ '''
132
+ n, c = x.shape[:2]
133
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
134
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
135
+ k = k.repeat(1, c, 1, 1)
136
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
137
+ x = x.view(1, -1, x.shape[2], x.shape[3])
138
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
139
+ x = x.view(n, c, x.shape[2], x.shape[3])
140
+
141
+ return x
142
+
143
+
144
+ def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
145
+ """"
146
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
147
+ # Kai Zhang
148
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
149
+ # max_var = 2.5 * sf
150
+ """
151
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
152
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
153
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
154
+ theta = np.random.rand() * np.pi # random theta
155
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
156
+
157
+ # Set COV matrix using Lambdas and Theta
158
+ LAMBDA = np.diag([lambda_1, lambda_2])
159
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
160
+ [np.sin(theta), np.cos(theta)]])
161
+ SIGMA = Q @ LAMBDA @ Q.T
162
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
163
+
164
+ # Set expectation position (shifting kernel for aligned image)
165
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
166
+ MU = MU[None, None, :, None]
167
+
168
+ # Create meshgrid for Gaussian
169
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
170
+ Z = np.stack([X, Y], 2)[:, :, :, None]
171
+
172
+ # Calcualte Gaussian for every pixel of the kernel
173
+ ZZ = Z - MU
174
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
175
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
176
+
177
+ # shift the kernel so it will be centered
178
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
179
+
180
+ # Normalize the kernel and return
181
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
182
+ kernel = raw_kernel / np.sum(raw_kernel)
183
+ return kernel
184
+
185
+
186
+ def fspecial_gaussian(hsize, sigma):
187
+ hsize = [hsize, hsize]
188
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
189
+ std = sigma
190
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
191
+ arg = -(x * x + y * y) / (2 * std * std)
192
+ h = np.exp(arg)
193
+ h[h < scipy.finfo(float).eps * h.max()] = 0
194
+ sumh = h.sum()
195
+ if sumh != 0:
196
+ h = h / sumh
197
+ return h
198
+
199
+
200
+ def fspecial_laplacian(alpha):
201
+ alpha = max([0, min([alpha, 1])])
202
+ h1 = alpha / (alpha + 1)
203
+ h2 = (1 - alpha) / (alpha + 1)
204
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
205
+ h = np.array(h)
206
+ return h
207
+
208
+
209
+ def fspecial(filter_type, *args, **kwargs):
210
+ '''
211
+ python code from:
212
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
213
+ '''
214
+ if filter_type == 'gaussian':
215
+ return fspecial_gaussian(*args, **kwargs)
216
+ if filter_type == 'laplacian':
217
+ return fspecial_laplacian(*args, **kwargs)
218
+
219
+
220
+ """
221
+ # --------------------------------------------
222
+ # degradation models
223
+ # --------------------------------------------
224
+ """
225
+
226
+
227
+ def bicubic_degradation(x, sf=3):
228
+ '''
229
+ Args:
230
+ x: HxWxC image, [0, 1]
231
+ sf: down-scale factor
232
+ Return:
233
+ bicubicly downsampled LR image
234
+ '''
235
+ x = util.imresize_np(x, scale=1 / sf)
236
+ return x
237
+
238
+
239
+ def srmd_degradation(x, k, sf=3):
240
+ ''' blur + bicubic downsampling
241
+ Args:
242
+ x: HxWxC image, [0, 1]
243
+ k: hxw, double
244
+ sf: down-scale factor
245
+ Return:
246
+ downsampled LR image
247
+ Reference:
248
+ @inproceedings{zhang2018learning,
249
+ title={Learning a single convolutional super-resolution network for multiple degradations},
250
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
251
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
252
+ pages={3262--3271},
253
+ year={2018}
254
+ }
255
+ '''
256
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
257
+ x = bicubic_degradation(x, sf=sf)
258
+ return x
259
+
260
+
261
+ def dpsr_degradation(x, k, sf=3):
262
+ ''' bicubic downsampling + blur
263
+ Args:
264
+ x: HxWxC image, [0, 1]
265
+ k: hxw, double
266
+ sf: down-scale factor
267
+ Return:
268
+ downsampled LR image
269
+ Reference:
270
+ @inproceedings{zhang2019deep,
271
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
272
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
273
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
274
+ pages={1671--1681},
275
+ year={2019}
276
+ }
277
+ '''
278
+ x = bicubic_degradation(x, sf=sf)
279
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
280
+ return x
281
+
282
+
283
+ def classical_degradation(x, k, sf=3):
284
+ ''' blur + downsampling
285
+ Args:
286
+ x: HxWxC image, [0, 1]/[0, 255]
287
+ k: hxw, double
288
+ sf: down-scale factor
289
+ Return:
290
+ downsampled LR image
291
+ '''
292
+ x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
293
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
294
+ st = 0
295
+ return x[st::sf, st::sf, ...]
296
+
297
+
298
+ def add_sharpening(img, weight=0.5, radius=50, threshold=10):
299
+ """USM sharpening. borrowed from real-ESRGAN
300
+ Input image: I; Blurry image: B.
301
+ 1. K = I + weight * (I - B)
302
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
303
+ 3. Blur mask:
304
+ 4. Out = Mask * K + (1 - Mask) * I
305
+ Args:
306
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
307
+ weight (float): Sharp weight. Default: 1.
308
+ radius (float): Kernel size of Gaussian blur. Default: 50.
309
+ threshold (int):
310
+ """
311
+ if radius % 2 == 0:
312
+ radius += 1
313
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
314
+ residual = img - blur
315
+ mask = np.abs(residual) * 255 > threshold
316
+ mask = mask.astype('float32')
317
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
318
+
319
+ K = img + weight * residual
320
+ K = np.clip(K, 0, 1)
321
+ return soft_mask * K + (1 - soft_mask) * img
322
+
323
+
324
+ def add_blur(img, sf=4):
325
+ wd2 = 4.0 + sf
326
+ wd = 2.0 + 0.2 * sf
327
+
328
+ wd2 = wd2/4
329
+ wd = wd/4
330
+
331
+ if random.random() < 0.5:
332
+ l1 = wd2 * random.random()
333
+ l2 = wd2 * random.random()
334
+ k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
335
+ else:
336
+ k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
337
+ img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
338
+
339
+ return img
340
+
341
+
342
+ def add_resize(img, sf=4):
343
+ rnum = np.random.rand()
344
+ if rnum > 0.8: # up
345
+ sf1 = random.uniform(1, 2)
346
+ elif rnum < 0.7: # down
347
+ sf1 = random.uniform(0.5 / sf, 1)
348
+ else:
349
+ sf1 = 1.0
350
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
351
+ img = np.clip(img, 0.0, 1.0)
352
+
353
+ return img
354
+
355
+
356
+ # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
357
+ # noise_level = random.randint(noise_level1, noise_level2)
358
+ # rnum = np.random.rand()
359
+ # if rnum > 0.6: # add color Gaussian noise
360
+ # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
361
+ # elif rnum < 0.4: # add grayscale Gaussian noise
362
+ # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
363
+ # else: # add noise
364
+ # L = noise_level2 / 255.
365
+ # D = np.diag(np.random.rand(3))
366
+ # U = orth(np.random.rand(3, 3))
367
+ # conv = np.dot(np.dot(np.transpose(U), D), U)
368
+ # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
369
+ # img = np.clip(img, 0.0, 1.0)
370
+ # return img
371
+
372
+ def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
373
+ noise_level = random.randint(noise_level1, noise_level2)
374
+ rnum = np.random.rand()
375
+ if rnum > 0.6: # add color Gaussian noise
376
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
377
+ elif rnum < 0.4: # add grayscale Gaussian noise
378
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
379
+ else: # add noise
380
+ L = noise_level2 / 255.
381
+ D = np.diag(np.random.rand(3))
382
+ U = orth(np.random.rand(3, 3))
383
+ conv = np.dot(np.dot(np.transpose(U), D), U)
384
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
385
+ img = np.clip(img, 0.0, 1.0)
386
+ return img
387
+
388
+
389
+ def add_speckle_noise(img, noise_level1=2, noise_level2=25):
390
+ noise_level = random.randint(noise_level1, noise_level2)
391
+ img = np.clip(img, 0.0, 1.0)
392
+ rnum = random.random()
393
+ if rnum > 0.6:
394
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
395
+ elif rnum < 0.4:
396
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
397
+ else:
398
+ L = noise_level2 / 255.
399
+ D = np.diag(np.random.rand(3))
400
+ U = orth(np.random.rand(3, 3))
401
+ conv = np.dot(np.dot(np.transpose(U), D), U)
402
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
403
+ img = np.clip(img, 0.0, 1.0)
404
+ return img
405
+
406
+
407
+ def add_Poisson_noise(img):
408
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
409
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
410
+ if random.random() < 0.5:
411
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
412
+ else:
413
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
414
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
415
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
416
+ img += noise_gray[:, :, np.newaxis]
417
+ img = np.clip(img, 0.0, 1.0)
418
+ return img
419
+
420
+
421
+ def add_JPEG_noise(img):
422
+ quality_factor = random.randint(80, 95)
423
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
424
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
425
+ img = cv2.imdecode(encimg, 1)
426
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
427
+ return img
428
+
429
+
430
+ def random_crop(lq, hq, sf=4, lq_patchsize=64):
431
+ h, w = lq.shape[:2]
432
+ rnd_h = random.randint(0, h - lq_patchsize)
433
+ rnd_w = random.randint(0, w - lq_patchsize)
434
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
435
+
436
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
437
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
438
+ return lq, hq
439
+
440
+
441
+ def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
442
+ """
443
+ This is the degradation model of BSRGAN from the paper
444
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
445
+ ----------
446
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
447
+ sf: scale factor
448
+ isp_model: camera ISP model
449
+ Returns
450
+ -------
451
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
452
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
453
+ """
454
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
455
+ sf_ori = sf
456
+
457
+ h1, w1 = img.shape[:2]
458
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
459
+ h, w = img.shape[:2]
460
+
461
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
462
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
463
+
464
+ hq = img.copy()
465
+
466
+ if sf == 4 and random.random() < scale2_prob: # downsample1
467
+ if np.random.rand() < 0.5:
468
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
469
+ interpolation=random.choice([1, 2, 3]))
470
+ else:
471
+ img = util.imresize_np(img, 1 / 2, True)
472
+ img = np.clip(img, 0.0, 1.0)
473
+ sf = 2
474
+
475
+ shuffle_order = random.sample(range(7), 7)
476
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
477
+ if idx1 > idx2: # keep downsample3 last
478
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
479
+
480
+ for i in shuffle_order:
481
+
482
+ if i == 0:
483
+ img = add_blur(img, sf=sf)
484
+
485
+ elif i == 1:
486
+ img = add_blur(img, sf=sf)
487
+
488
+ elif i == 2:
489
+ a, b = img.shape[1], img.shape[0]
490
+ # downsample2
491
+ if random.random() < 0.75:
492
+ sf1 = random.uniform(1, 2 * sf)
493
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
494
+ interpolation=random.choice([1, 2, 3]))
495
+ else:
496
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
497
+ k_shifted = shift_pixel(k, sf)
498
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
499
+ img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
500
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
501
+ img = np.clip(img, 0.0, 1.0)
502
+
503
+ elif i == 3:
504
+ # downsample3
505
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
506
+ img = np.clip(img, 0.0, 1.0)
507
+
508
+ elif i == 4:
509
+ # add Gaussian noise
510
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
511
+
512
+ elif i == 5:
513
+ # add JPEG noise
514
+ if random.random() < jpeg_prob:
515
+ img = add_JPEG_noise(img)
516
+
517
+ elif i == 6:
518
+ # add processed camera sensor noise
519
+ if random.random() < isp_prob and isp_model is not None:
520
+ with torch.no_grad():
521
+ img, hq = isp_model.forward(img.copy(), hq)
522
+
523
+ # add final JPEG compression noise
524
+ img = add_JPEG_noise(img)
525
+
526
+ # random crop
527
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
528
+
529
+ return img, hq
530
+
531
+
532
+ # todo no isp_model?
533
+ def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
534
+ """
535
+ This is the degradation model of BSRGAN from the paper
536
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
537
+ ----------
538
+ sf: scale factor
539
+ isp_model: camera ISP model
540
+ Returns
541
+ -------
542
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
543
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
544
+ """
545
+ image = util.uint2single(image)
546
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
547
+ sf_ori = sf
548
+
549
+ h1, w1 = image.shape[:2]
550
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
551
+ h, w = image.shape[:2]
552
+
553
+ hq = image.copy()
554
+
555
+ if sf == 4 and random.random() < scale2_prob: # downsample1
556
+ if np.random.rand() < 0.5:
557
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
558
+ interpolation=random.choice([1, 2, 3]))
559
+ else:
560
+ image = util.imresize_np(image, 1 / 2, True)
561
+ image = np.clip(image, 0.0, 1.0)
562
+ sf = 2
563
+
564
+ shuffle_order = random.sample(range(7), 7)
565
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
566
+ if idx1 > idx2: # keep downsample3 last
567
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
568
+
569
+ for i in shuffle_order:
570
+
571
+ if i == 0:
572
+ image = add_blur(image, sf=sf)
573
+
574
+ # elif i == 1:
575
+ # image = add_blur(image, sf=sf)
576
+
577
+ if i == 0:
578
+ pass
579
+
580
+ elif i == 2:
581
+ a, b = image.shape[1], image.shape[0]
582
+ # downsample2
583
+ if random.random() < 0.8:
584
+ sf1 = random.uniform(1, 2 * sf)
585
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
586
+ interpolation=random.choice([1, 2, 3]))
587
+ else:
588
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
589
+ k_shifted = shift_pixel(k, sf)
590
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
591
+ image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
592
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
593
+
594
+ image = np.clip(image, 0.0, 1.0)
595
+
596
+ elif i == 3:
597
+ # downsample3
598
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
599
+ image = np.clip(image, 0.0, 1.0)
600
+
601
+ elif i == 4:
602
+ # add Gaussian noise
603
+ image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
604
+
605
+ elif i == 5:
606
+ # add JPEG noise
607
+ if random.random() < jpeg_prob:
608
+ image = add_JPEG_noise(image)
609
+ #
610
+ # elif i == 6:
611
+ # # add processed camera sensor noise
612
+ # if random.random() < isp_prob and isp_model is not None:
613
+ # with torch.no_grad():
614
+ # img, hq = isp_model.forward(img.copy(), hq)
615
+
616
+ # add final JPEG compression noise
617
+ image = add_JPEG_noise(image)
618
+ image = util.single2uint(image)
619
+ if up:
620
+ image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
621
+ example = {"image": image}
622
+ return example
623
+
624
+
625
+
626
+
627
+ if __name__ == '__main__':
628
+ print("hey")
629
+ img = util.imread_uint('utils/test.png', 3)
630
+ img = img[:448, :448]
631
+ h = img.shape[0] // 4
632
+ print("resizing to", h)
633
+ sf = 4
634
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
635
+ for i in range(20):
636
+ print(i)
637
+ img_hq = img
638
+ img_lq = deg_fn(img)["image"]
639
+ img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
640
+ print(img_lq)
641
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
642
+ print(img_lq.shape)
643
+ print("bicubic", img_lq_bicubic.shape)
644
+ print(img_hq.shape)
645
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
646
+ interpolation=0)
647
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
648
+ (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
649
+ interpolation=0)
650
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
651
+ util.imsave(img_concat, str(i) + '.png')