diff --git "a/demo.ipynb" "b/demo.ipynb" new file mode 100644--- /dev/null +++ "b/demo.ipynb" @@ -0,0 +1,1290 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOcNNO6b/4X+3VXZr1bdSH6", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "474d9a121acd4a4ab0d9f946db1568bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_576d89979ab246ed9889ca55ebef3d92", + "IPY_MODEL_700fe25008db413db8fe97821a164ab4", + "IPY_MODEL_46d2cadc00a348b69721f0a451b6ea8c" + ], + "layout": "IPY_MODEL_4340f0135b5d4a2f90a507ab8230e6e7" + } + }, + "576d89979ab246ed9889ca55ebef3d92": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cead9aa9d7b34351b660f330c27ac310", + "placeholder": "​", + "style": "IPY_MODEL_9552a1bfd4d34f76b6a1582b612a4ebf", + "value": "config.yaml: 100%" + } + }, + "700fe25008db413db8fe97821a164ab4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b1d1d14f6aa94217b3d6dfd3daee1da8", + "max": 461, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_99867e32bd674d709aaf1b0f7102ee81", + "value": 461 + } + }, + "46d2cadc00a348b69721f0a451b6ea8c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03c99e67ea69449f9a7bcda1419d0ec4", + "placeholder": "​", + "style": "IPY_MODEL_380cbd29f1b84541ae20ef1f683ce69f", + "value": " 461/461 [00:00<00:00, 33.7kB/s]" + } + }, + "4340f0135b5d4a2f90a507ab8230e6e7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cead9aa9d7b34351b660f330c27ac310": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9552a1bfd4d34f76b6a1582b612a4ebf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b1d1d14f6aa94217b3d6dfd3daee1da8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99867e32bd674d709aaf1b0f7102ee81": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "03c99e67ea69449f9a7bcda1419d0ec4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "380cbd29f1b84541ae20ef1f683ce69f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b5624e5cd9a54018ac0a1db436ea7202": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed549a2ef8ef4b28b73d8b56cbd3519d", + "IPY_MODEL_a72129f5b6774545a9e0a30f7cb1e619", + "IPY_MODEL_6166f05435dc4b59b7a36229183a4828" + ], + "layout": "IPY_MODEL_dbf4ddee3a42433c98ccce6883fab83d" + } + }, + "ed549a2ef8ef4b28b73d8b56cbd3519d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9a2279178094b598fcd978e8edc75fa", + "placeholder": "​", + "style": "IPY_MODEL_62fdbd59289c45e6a56154f9c7740c87", + "value": "pytorch_model.bin: 100%" + } + }, + "a72129f5b6774545a9e0a30f7cb1e619": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_198ea7e06ab94c34b3c35b978ce754ff", + "max": 54365991, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c9f4972097d49259122001e726d67bd", + "value": 54365991 + } + }, + "6166f05435dc4b59b7a36229183a4828": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e52c628e5904044a77a2cc9efb942f0", + "placeholder": "​", + "style": "IPY_MODEL_4d20115a059542f9b718f4f69fb16a87", + "value": " 54.4M/54.4M [00:00<00:00, 123MB/s]" + } + }, + "dbf4ddee3a42433c98ccce6883fab83d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9a2279178094b598fcd978e8edc75fa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "62fdbd59289c45e6a56154f9c7740c87": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "198ea7e06ab94c34b3c35b978ce754ff": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c9f4972097d49259122001e726d67bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3e52c628e5904044a77a2cc9efb942f0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d20115a059542f9b718f4f69fb16a87": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "!git clone -b master https://github.com/adelacvg/ttts.git" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WB8vmGyDAPrr", + "outputId": "cee62580-1134-435f-d6ce-e68402a48a31" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'ttts'...\n", + "remote: Enumerating objects: 538, done.\u001b[K\n", + "remote: Counting objects: 100% (444/444), done.\u001b[K\n", + "remote: Compressing objects: 100% (283/283), done.\u001b[K\n", + "remote: Total 538 (delta 241), reused 346 (delta 154), pack-reused 94\u001b[K\n", + "Receiving objects: 100% (538/538), 61.11 MiB | 13.93 MiB/s, done.\n", + "Resolving deltas: 100% (250/250), done.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "%cd ttts\n", + "!pip install -e ." + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HKikTDsVA1_g", + "outputId": "1906df87-d848-4099-acec-b18c40db200a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/content/ttts\n", + "Obtaining file:///content/ttts\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Installing collected packages: ttts\n", + " Running setup.py develop for ttts\n", + "Successfully installed ttts-0.1\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!git lfs install\n", + "!git clone https://huggingface.co/adelacvg/TTTS" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_KYD7eZQB4x7", + "outputId": "dc2fc2b8-5883-4d96-96b6-5df190d356f7" + }, + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Git LFS initialized.\n", + "Cloning into 'TTTS'...\n", + "fatal: Remote branch master not found in upstream origin\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import locale\n", + "locale.getpreferredencoding = lambda: \"UTF-8\"\n", + "!pip install pypinyin einops omegaconf==2.0.6 encodec vocos k_diffusion" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UcOqgsONDGZ3", + "outputId": "5d0ef477-0263-4cad-cd75-da93a1482a87" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting pypinyin\n", + " Downloading pypinyin-0.50.0-py2.py3-none-any.whl (1.4 MB)\n", + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/1.4 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.2/1.4 MB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.6/1.4 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━\u001b[0m \u001b[32m1.0/1.4 MB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting einops\n", + " Downloading einops-0.7.0-py3-none-any.whl (44 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.6/44.6 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting omegaconf==2.0.6\n", + " Downloading omegaconf-2.0.6-py3-none-any.whl (36 kB)\n", + "Collecting encodec\n", + " Downloading encodec-0.1.1.tar.gz (3.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.7/3.7 MB\u001b[0m \u001b[31m23.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting vocos\n", + " Downloading vocos-0.1.0-py3-none-any.whl (24 kB)\n", + "Collecting k_diffusion\n", + " Downloading k_diffusion-0.1.1.post1-py3-none-any.whl (33 kB)\n", + "Requirement already satisfied: PyYAML>=5.1.* in /usr/local/lib/python3.10/dist-packages (from omegaconf==2.0.6) (6.0.1)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from omegaconf==2.0.6) (4.5.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from encodec) (1.23.5)\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from encodec) (2.1.0+cu121)\n", + "Requirement already satisfied: torchaudio in /usr/local/lib/python3.10/dist-packages (from encodec) (2.1.0+cu121)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from vocos) (1.11.4)\n", + "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from vocos) (0.20.2)\n", + "Collecting accelerate (from k_diffusion)\n", + " Downloading accelerate-0.26.1-py3-none-any.whl (270 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m270.9/270.9 kB\u001b[0m \u001b[31m27.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting clean-fid (from k_diffusion)\n", + " Downloading clean_fid-0.1.35-py3-none-any.whl (26 kB)\n", + "Collecting clip-anytorch (from k_diffusion)\n", + " Downloading clip_anytorch-2.6.0-py3-none-any.whl (1.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m31.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting dctorch (from k_diffusion)\n", + " Downloading dctorch-0.1.2-py3-none-any.whl (2.3 kB)\n", + "Collecting jsonmerge (from k_diffusion)\n", + " Downloading jsonmerge-1.9.2-py3-none-any.whl (19 kB)\n", + "Collecting kornia (from k_diffusion)\n", + " Downloading kornia-0.7.1-py2.py3-none-any.whl (756 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m756.0/756.0 kB\u001b[0m \u001b[31m37.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from k_diffusion) (9.4.0)\n", + "Requirement already satisfied: safetensors in /usr/local/lib/python3.10/dist-packages (from k_diffusion) (0.4.1)\n", + "Requirement already satisfied: scikit-image in /usr/local/lib/python3.10/dist-packages (from k_diffusion) (0.19.3)\n", + "Collecting torchdiffeq (from k_diffusion)\n", + " Downloading torchdiffeq-0.2.3-py3-none-any.whl (31 kB)\n", + "Collecting torchsde (from k_diffusion)\n", + " Downloading torchsde-0.2.6-py3-none-any.whl (61 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.2/61.2 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from k_diffusion) (0.16.0+cu121)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from k_diffusion) (4.66.1)\n", + "Collecting wandb (from k_diffusion)\n", + " Downloading wandb-0.16.2-py3-none-any.whl (2.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m38.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->encodec) (3.13.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->encodec) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->encodec) (3.2.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->encodec) (3.1.2)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->encodec) (2023.6.0)\n", + "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch->encodec) (2.1.0)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate->k_diffusion) (23.2)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate->k_diffusion) (5.9.5)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from clean-fid->k_diffusion) (2.31.0)\n", + "Collecting ftfy (from clip-anytorch->k_diffusion)\n", + " Downloading ftfy-6.1.3-py3-none-any.whl (53 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.4/53.4 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from clip-anytorch->k_diffusion) (2023.6.3)\n", + "Requirement already satisfied: jsonschema>2.4.0 in /usr/local/lib/python3.10/dist-packages (from jsonmerge->k_diffusion) (4.19.2)\n", + "Requirement already satisfied: imageio>=2.4.1 in /usr/local/lib/python3.10/dist-packages (from scikit-image->k_diffusion) (2.31.6)\n", + "Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.10/dist-packages (from scikit-image->k_diffusion) (2023.12.9)\n", + "Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-image->k_diffusion) (1.5.0)\n", + "Collecting trampoline>=0.1.2 (from torchsde->k_diffusion)\n", + " Downloading trampoline-0.1.2-py3-none-any.whl (5.2 kB)\n", + "Requirement already satisfied: Click!=8.0.0,>=7.1 in /usr/local/lib/python3.10/dist-packages (from wandb->k_diffusion) (8.1.7)\n", + "Collecting GitPython!=3.1.29,>=1.0.0 (from wandb->k_diffusion)\n", + " Downloading GitPython-3.1.41-py3-none-any.whl (196 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.4/196.4 kB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting sentry-sdk>=1.0.0 (from wandb->k_diffusion)\n", + " Downloading sentry_sdk-1.39.2-py2.py3-none-any.whl (254 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m254.1/254.1 kB\u001b[0m \u001b[31m23.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting docker-pycreds>=0.4.0 (from wandb->k_diffusion)\n", + " Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n", + "Collecting setproctitle (from wandb->k_diffusion)\n", + " Downloading setproctitle-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30 kB)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from wandb->k_diffusion) (67.7.2)\n", + "Requirement already satisfied: appdirs>=1.4.3 in /usr/local/lib/python3.10/dist-packages (from wandb->k_diffusion) (1.4.4)\n", + "Requirement already satisfied: protobuf!=4.21.0,<5,>=3.19.0 in /usr/local/lib/python3.10/dist-packages (from wandb->k_diffusion) (3.20.3)\n", + "Requirement already satisfied: six>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from docker-pycreds>=0.4.0->wandb->k_diffusion) (1.16.0)\n", + "Collecting gitdb<5,>=4.0.1 (from GitPython!=3.1.29,>=1.0.0->wandb->k_diffusion)\n", + " Downloading gitdb-4.0.11-py3-none-any.whl (62 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>2.4.0->jsonmerge->k_diffusion) (23.2.0)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>2.4.0->jsonmerge->k_diffusion) (2023.12.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>2.4.0->jsonmerge->k_diffusion) (0.32.1)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>2.4.0->jsonmerge->k_diffusion) (0.16.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->clean-fid->k_diffusion) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->clean-fid->k_diffusion) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->clean-fid->k_diffusion) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->clean-fid->k_diffusion) (2023.11.17)\n", + "Requirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /usr/local/lib/python3.10/dist-packages (from ftfy->clip-anytorch->k_diffusion) (0.2.12)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->encodec) (2.1.3)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->encodec) (1.3.0)\n", + "Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython!=3.1.29,>=1.0.0->wandb->k_diffusion)\n", + " Downloading smmap-5.0.1-py3-none-any.whl (24 kB)\n", + "Building wheels for collected packages: encodec\n", + " Building wheel for encodec (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for encodec: filename=encodec-0.1.1-py3-none-any.whl size=45759 sha256=a6f25c3141ae73377bf58efa53716b479f3299aaebcbaf213514f7955a86427f\n", + " Stored in directory: /root/.cache/pip/wheels/fc/36/cb/81af8b985a5f5e0815312d5e52b41263237af07b977e6bcbf3\n", + "Successfully built encodec\n", + "Installing collected packages: trampoline, smmap, setproctitle, sentry-sdk, pypinyin, omegaconf, ftfy, einops, docker-pycreds, gitdb, torchsde, torchdiffeq, kornia, GitPython, dctorch, accelerate, wandb, jsonmerge, encodec, clip-anytorch, clean-fid, vocos, k_diffusion\n", + "Successfully installed GitPython-3.1.41 accelerate-0.26.1 clean-fid-0.1.35 clip-anytorch-2.6.0 dctorch-0.1.2 docker-pycreds-0.4.0 einops-0.7.0 encodec-0.1.1 ftfy-6.1.3 gitdb-4.0.11 jsonmerge-1.9.2 k_diffusion-0.1.1.post1 kornia-0.7.1 omegaconf-2.0.6 pypinyin-0.50.0 sentry-sdk-1.39.2 setproctitle-1.3.3 smmap-5.0.1 torchdiffeq-0.2.3 torchsde-0.2.6 trampoline-0.1.2 vocos-0.1.0 wandb-0.16.2\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9Iz6jokZ_-AB" + }, + "outputs": [], + "source": [ + "from pypinyin import lazy_pinyin, Style\n", + "import torch\n", + "\n", + "MODELS = {\n", + " 'vqvae.pth':'TTTS/vae-30.pt',\n", + " 'gpt.pth': 'TTTS/gpt-70.pt',\n", + " 'clvp2.pth': '',\n", + " 'diffusion.pth': 'TTTS/diffusion-855.pt',\n", + " 'vocoder.pth': '~/tortoise_plus_zh/ttts/pretrained_models/pytorch_model.bin',\n", + " 'rlg_auto.pth': '',\n", + " 'rlg_diffuser.pth': '',\n", + "}" + ] + }, + { + "cell_type": "code", + "source": [ + "from ttts.gpt.voice_tokenizer import VoiceBpeTokenizer\n", + "import torch.nn.functional as F\n", + "device = 'cuda:0'\n", + "text = \"大家好,今天来点大家想看的东西。\"\n", + "# text = \"霞浦县衙城镇乌旗瓦窑村水位猛涨。\"\n", + "# text = '高德官方网站,拥有全面、精准的地点信息,公交驾车路线规划,特色语音导航,商家团购、优惠信息。'\n", + "# text = '四是四,十是十,十四是十四,四十是四十。'\n", + "# text = '八百标兵奔北坡,炮兵并排北边跑。炮兵怕把标兵碰,标兵怕碰炮兵炮。'\n", + "# text = '黑化肥发灰,灰化肥发黑。黑化肥挥发会发灰;灰化肥挥发会发黑。'\n", + "# text = '先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。'\n", + "pinyin = ' '.join(lazy_pinyin(text, style=Style.TONE3, neutral_tone_with_five=True))\n", + "tokenizer = VoiceBpeTokenizer('ttts/gpt/gpt_tts_tokenizer.json')\n", + "text_tokens = torch.IntTensor(tokenizer.encode(pinyin)).unsqueeze(0).to(device)\n", + "text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.\n", + "text_tokens = text_tokens.to(device)\n", + "print(pinyin)\n", + "print(text_tokens)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SpTKi32TDQFi", + "outputId": "84292cc0-d09e-420d-c449-a746e44dade5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "da4 jia1 hao3 , jin1 tian1 lai2 dian3 da4 jia1 xiang3 kan4 de5 dong1 xi1 。\n", + "tensor([[161, 2, 155, 2, 16, 87, 2, 43, 2, 224, 2, 171, 71, 2,\n", + " 182, 2, 188, 2, 161, 2, 155, 2, 62, 92, 2, 19, 63, 2,\n", + " 65, 2, 12, 84, 2, 228, 2, 39, 0]], device='cuda:0',\n", + " dtype=torch.int32)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from ttts.utils.infer_utils import load_model\n", + "from ttts.vocoder.feature_extractors import MelSpectrogramFeatures\n", + "import torchaudio\n", + "# device = 'gpu:0'\n", + "gpt = load_model('gpt',MODELS['gpt.pth'],'ttts/gpt/config.json',device)\n", + "gpt.post_init_gpt2_config(use_deepspeed=False, kv_cache=False, half=False)\n", + "# diffusion = load_model('diffusion',MODELS['diffusion.pth'],'ttts/diffusion/config.json',device)\n", + "cond_audio = 'ttts/3.wav'\n", + "audio,sr = torchaudio.load(cond_audio)\n", + "if audio.shape[0]>1:\n", + " audio = audio[0].unsqueeze(0)\n", + "audio = torchaudio.transforms.Resample(sr,24000)(audio)\n", + "cond_mel = MelSpectrogramFeatures()(audio).to(device)\n", + "print(cond_mel.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0LBf8nz2DQ-_", + "outputId": "5da3c1c4-1988-4f78-d6c3-0bb936132ea0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py:381: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([1, 100, 400])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "auto_conditioning = cond_mel\n", + "settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,\n", + " 'top_p': .8,\n", + " 'cond_free_k': 2.0, 'diffusion_temperature': 1.0}\n", + "top_p = .8\n", + "temperature = .8\n", + "autoregressive_batch_size = 1\n", + "length_penalty = 1.0\n", + "repetition_penalty = 2.0\n", + "max_mel_tokens = 600\n", + "print(auto_conditioning.shape)\n", + "print(text_tokens.shape)\n", + "# text_tokens = F.pad(text_tokens,(0,400-text_tokens.shape[1]),value=0)\n", + "print(text_tokens.shape)\n", + "codes = gpt.inference_speech(auto_conditioning, text_tokens,\n", + " do_sample=True,\n", + " top_p=top_p,\n", + " temperature=temperature,\n", + " num_return_sequences=autoregressive_batch_size,\n", + " length_penalty=length_penalty,\n", + " repetition_penalty=repetition_penalty,\n", + " max_generate_length=max_mel_tokens)\n", + "print(codes)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VFEHSQ42Dadt", + "outputId": "774d31e7-8619-40b7-b503-29b1db39b07a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([1, 100, 400])\n", + "torch.Size([1, 37])\n", + "torch.Size([1, 37])\n", + "tensor([[2867, 40, 7537, 5986, 692, 8079, 3282, 2094, 7478, 3286, 6652, 6674,\n", + " 5798, 2868, 4153, 1419, 4593, 423, 4472, 1487, 1989, 1628, 2796, 7296,\n", + " 4683, 3228, 7038, 6446, 89, 650, 7796, 2746, 4241, 4120, 2312, 1319,\n", + " 920, 4114, 6384, 4140, 1420, 7758, 1772, 6313, 4813, 1588, 366, 7217,\n", + " 6078, 2773, 6962, 5245, 7034, 1663, 6909, 7176, 3340, 3308, 1078, 72,\n", + " 1060, 4546, 2860, 3679, 6956, 4215, 2774, 5394, 0, 8193]],\n", + " device='cuda:0')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from vocos import Vocos\n", + "\n", + "vocos = Vocos.from_pretrained(\"charactr/vocos-mel-24khz\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 209, + "referenced_widgets": [ + "474d9a121acd4a4ab0d9f946db1568bc", + "576d89979ab246ed9889ca55ebef3d92", + "700fe25008db413db8fe97821a164ab4", + "46d2cadc00a348b69721f0a451b6ea8c", + "4340f0135b5d4a2f90a507ab8230e6e7", + "cead9aa9d7b34351b660f330c27ac310", + "9552a1bfd4d34f76b6a1582b612a4ebf", + "b1d1d14f6aa94217b3d6dfd3daee1da8", + "99867e32bd674d709aaf1b0f7102ee81", + "03c99e67ea69449f9a7bcda1419d0ec4", + "380cbd29f1b84541ae20ef1f683ce69f", + "b5624e5cd9a54018ac0a1db436ea7202", + "ed549a2ef8ef4b28b73d8b56cbd3519d", + "a72129f5b6774545a9e0a30f7cb1e619", + "6166f05435dc4b59b7a36229183a4828", + "dbf4ddee3a42433c98ccce6883fab83d", + "b9a2279178094b598fcd978e8edc75fa", + "62fdbd59289c45e6a56154f9c7740c87", + "198ea7e06ab94c34b3c35b978ce754ff", + "0c9f4972097d49259122001e726d67bd", + "3e52c628e5904044a77a2cc9efb942f0", + "4d20115a059542f9b718f4f69fb16a87" + ] + }, + "id": "cIGDrvOHDfvS", + "outputId": "50e7c89c-d2c2-4655-c34b-0cd7d556b791" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.yaml: 0%| | 0.00/461 [00:00" + ], + "text/html": [ + "\n", + " \n", + " " + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + } + ] +} \ No newline at end of file